The Higgs, gauge bosons, and top quark at LHC

Andrei Gritsan Johns Hopkins University

for the ATLAS and CMS experiments

May 6, 2019

Phenomenology Symposium University of Pittsburgh

LHC: Focus on Run-2 (and the next 20 years)

CMS: a bird's-eye view on the W/Z, top, H

March 2019

ATLAS: a bird's-eye view on the W/Z, top, H

H,W/Z, top: the big picture view

H⁰,W/Z, top: the PDG view

H,W/Z, top: the mass

Andrei Gritsan, JHU

H: the mass

Top: the mass

pole mass m_t from theory σ(m_t^{pole}; PDF, α_s; μ_F, μ_R,...)
 direct m_t reconstruction (match to MC)

Top: the mass

- pole mass m_t from theory $\sigma(m_t^{\text{pole}}; \text{PDF}, \alpha_s; \mu_F, \mu_R,...)$
- triple-differential $[M(t\bar{t}), y(t\bar{t}), N_{jet}^{0,1,+}]$ $e^{\pm}\mu^{\mp}, e^{+}e^{-}, \mu^{+}\mu^{-} + \geq 2$ jets

 m_t^{pole} and m_t^{MC} differ, non-perturbative effects

Pred. / Data

H,W/Z, top: the width / lifetime

H: the width (offshell H*)

Top: the width

 expected Γ_t ~1.32 GeV (~ ±0.08 GeV) modified by V_{tb}, FCNC...

- t interview
- indirect constraints (PDG): from B_R(t→Wb/Wq), σ(single-top)
 ~ ±0.14 GeV, but scaling SM calculations

H,W/Z, top: spin correlations

H: spin correlations

CMS Supplementary

5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 80.2 fb⁻¹ (13 TeV) HIG-18-002 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 80.2 fb⁻¹ (13 TeV) HIG-17-034 0.5 HIG-14-036 HIG-14-018 CMS decay Observed 10² Expected -0.5 Observed, $H \rightarrow 4\ell$ $\overline{a_2^{Z\gamma}}$ Expected, $H \rightarrow 4\ell$ $\Lambda_1^{Z\gamma}$ - Best fit & 68% CL a_3 a_2 Λ_1 Excluded at 95% CL Expected at 95% CL Expected at 68% CL Observed, $H \rightarrow \tau \tau$ HZZ+HWW HZγ Expected, $H \rightarrow \tau \tau$ -2 Aln L CMS arXiv:1901.00174 oduction 10 Observed VBF **Total SM VBF+VH SM** TT 8 Total $f_{a3} = 1$ VBF+VH $f_{a3} = 1$ 95% CL / bin ZZ/Zy* 68% CL 6 Z+X Events -1 -0.8-0.6-0.4-0.2 -0.02 0.2 0.4 0.6 0.8 0 0.02 CMS 77.5 fb⁻¹ (13 TeV ✔ f_{a3} cos(φ_{a3}) Observed 100 Untagged Total SM fraction of VBF+VH SM Total $f_{a3} = 1$ VBF+VH f_{a3} = 1 4*l* anomalous effects Events / bin ZZ/Ζγ Z+X signal 50 (e.g. CP-violation) CP-odd: f_{a3} < 0.092 0,

0.2

0.4

 $\mathsf{D}_{\mathsf{bkg}}$

0.6

CP-even: f_{a2} < 0.0034

CMS arXiv:1903.06973

0.8

 $a_3^{Z\gamma}$

 $a_2^{\gamma\gamma}$

Ηγγ

 $a_3^{\gamma\gamma}$

77.5 fb⁻¹ (13 TeV)

VBF-tagged

 $H \rightarrow 4\ell$

 Λ_0

 $(\Gamma_{\rm H} = \Gamma_{\rm H}^{\rm SM})$

0.8

0.2

0.4

'0-

0.6

D^{VBF+dec}

H: spin correlations

Z/γ^* : spin correlations (weak mixing angle θ_W)

Top: spin correlations

Top: spin correlations

Andrei Gritsan, JHU

ZZ: couplings / cross sections (full Run2)

- CMS-PAS-SMP-19-001 101 fb⁻¹ (13 TeV) GeV **CMS** Preliminary *q* qq/qq → ZZ(+jets Events / 50 ($Z^{(*)}$ aa → 77(+iet Z+X VVV → 77 $Z^{(*)}$ Stat. und $Z^{(*)}$ ^g وووں ^g 400 g **QQQ** 200 $Z^{(*)}$ Data / Pred 1.5 200 400 600 800 1000 1200 ATLAS arXiv:1902.05892 m_{zz} [GeV] dơ/dm₄ [fb/GeV] ATLAS $1 = \sqrt{s} = 13$ TeV. 36.1 fb⁻¹ 10- 10^{-2} Data 10^{-3} Prediction / Observation Matrix fixed-order NNLC 1.5 0.580 100 200 300 400 500 1000 $m_{4|}$ [GeV]
- Test higher order effects (QCD, EW)
 —cross section and differential
- Important for H physics
 both on- and off-shell

STXS s1.1: a new standard to communicate H data from LHC to Pheno colleagues

STXS s1.1: a new standard to communicate H data from LHC to Pheno colleagues

 m_{jj}

350

700

1000

1500

 ∞

ZZ→µ⁺µµ⁺µ

pp→tīH

Events / bin

3

2.5

2

1.5

1

0.5

=

170

160

 m_{4l} (GeV)

Ut

ATLAS combination 2015+2016+(2017) data:

Analysis	Integrated luminosity (fb ⁻¹)
$H \to \gamma \gamma$ (including $t\bar{t}H, H \to \gamma \gamma$)	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell$)	79.8 AT
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H \rightarrow \tau \tau$	36.1
$VH, H \rightarrow b\bar{b}$	79.8
VBF, $H \rightarrow b\bar{b}$	24.5 - 30.6
$H \rightarrow \mu \mu$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1
$H \rightarrow \text{invisible}$	36.1
Off-shell $H \to ZZ^* \to 4\ell$ and $H \to ZZ^* \to 2\ell 2\nu$	36.1

H: couplings to b and T

ttH: couplings (including full Run2)

ttH: couplings (including full Run2)

tt: couplings / cross sections

tttt: couplings / cross sections (full Run2)

top: rare/exotic processes

W/Z: Triliniear Gauge Couplings and more...

W/Z: Quartic Gauge Couplings and more...

W/Z: Multiboson VVV

H: rare/exotic processes

H,W/Z, top: pre-view of the parallel sessions

Higgs boson

- BSM Higgs results from ATLAS
- Searches for Higgs boson exotic decays at CMS
- Searches for rare decays of the Higgs boson at CMS
- ATLAS Searches for VH/HH Resonances
- Combined Higgs boson measurements at the ATLAS experiment
- Measurement of differential and production mode cross sections and the Higgs mass in Higgs boson in decays to bosons using the ATLAS detector
- Measurements and searches of Higgs boson decays to two fermions and of Higgs boson production in association with a ttbar pair at ATLAS

W/Z bosons

- Electroweak physics with multibosons at CMS
- Measurements of multiboson production using the ATLAS detector
- Electroweak physics with single and diboson final states at CMS
- Observation and measurements of vector-boson scattering with ATLAS
- Precision electroweak measurements with ATLAS
- Probing perturbative QCD using electroweak bosons at ATLAS

Top quark

- Measurements of ttbar pairs produced in association with electroweak gauge bosons using the ATLAS detector

//

- Top quark pair property measurements using the ATLAS detector at the LHC
- Top-quark pair production cross-section measurements with the ATLAS detector

Higgs boson LHC links:	https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
W/Z boson LHC links:	https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
Top quark LHC links:	https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Summary (H,W/Z, top: view from the speaker)

- LHC is the H,W/Z, top factory even more so at HL-LHC
- ATLAS and CMS

progress beyond just \mathscr{L} umi

- Exploring full Run-2 dataset
 - established all major processes closing on / excluding rare modes sensitive to virtual effects determine fundamental parameters
- Ultimately trying to establish the big picture.

Andrei Gritsan, JHU

H,W/Z, top: some HL-LHC projections

Z/γ^* : spin correlations (weak mixing angle θ_W)

H: the width (offshell H*)

Andrei Gritsan, JHU

HL-LHC expect 3000 fb⁻¹ —reaching 2-4% precision

H: self-coupling

H self-coupling:

ATL-PHYS-PUB-2019-009

 $-3.2 < \kappa_{\lambda} < 11.9$ (exp. $-6.2 < \kappa_{\lambda} < 14.4$)

-direct constraints

best expected now $-5.8 < \kappa_{\lambda} < 12.0$

target of HL-LHC and HE-LHC: (14 TeV, 3/ab) (27 TeV, 15/ab)

Andrei Gritsan, JHU