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Standard Model of Particle Physics:
Predictions for Cosmology

Armed with measurements of the current baryon and radiation
density, the SM makes predictions for:

* Expansion History
H(a) = HO(_QBa—B + 'QRa_4 + (1 _ QB)a_z)l/z

* Epoch of Equality
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Overdensity

Power Spectrum

RMS Fluctuations
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What is g4 ?
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Choose Wi to be a tophat function
(in real space) with R=8hMpc (37 M light years)




Standard Model of Particle Physics:
Predictions for Cosmology

These predictions are wrong
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Standard Model of Particle Physics:
Predictions for Cosmology

These predictions are wrong
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Standard Model of Particle Physics:
Predictions for Cosmology

These predictions are wrong
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These predictions all fail ... leading to
“Cosmology in the New Era”




“Cosmology in the New Era” gets the
epoch of equality right
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“Cosmology in the New Era” gets the
power spectrum right
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CNE agrees with all data on large scales (the only data for
which we can make accurate predictions)
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Cosmology in the New Era:

Implications for Particle Physics
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Determine the identity of the dark matter
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Weakly Interacting Massive
Particles (WIMPs) led to a well-
defined 3-pronged program.
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Cosmology in the New Era:
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Cosmology in the New Era:
Implications for Particle Physics

Determine the origin of the primordial fluctuations (inflation?)
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Cosmology in the New Era:
Implications for Particle Physics

Determine the nature of dark energy

p(a)= p, exp{3 j d‘f [1+ W(a’)]}

a

Determine the equation of state
of dark energy (w=-1 corresponds
to a cosmological constant) 2
w=-1 to within ~5%, so ...
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Cosmology in the New Era:
Implications for Particle Physics

Determine the nature of dark energy = Stress test the
Cosmological Constant model
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Measure Distances and Growth of Structure



Distance Tests
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Growth of Structure Tests

We will focus on two parameters:

¢+ O The mass density (stars, neutrinos, atoms,
dark matter) in units of the critical density

¢ og The root mean square of the fluctuations in

the mass density smoothed over scales of 8 ht
Mpc today

The parameters are not awe-inspiring (who cares about g?)
... but they quantify an amazing testable prediction



Imagine a similar prediction in the stock

market
Your model 6
predicts that the —om
stock price of — Theory
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increase by 19%
every year. All you
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data to predict
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Similarly, the Standard Model, armed with CMB data that
provide the initial conditions, makes a zero parameter fit for
the RMS fluctuations today
... at the percent level
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DES Y1 Results: Power a bit lower then
the Standard Model predicts
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How to measure mass when we see only
light?

¢+ Use Galaxies as tracers
Galaxies form in over-dense regions, so an excess of
galaxies <-> an excess of mass. But the precise relation
between overdensities is governed by a bias parameter

¢+ Measure the shapes of background galaxies
Shapes are distorted as the light they emit traverses
through the inhomogeneous universe. Infer information
about the mass along the line of sight. The distortions are
small, much smaller than random variations




Weak Gravitational Lensing:
Galaxy Shapes are Distorted by intervening
Mass

f v
- ' -
: . == ,
¢ c & . 61 >0 | ! \ ! 61 <O

\‘\ / /
R \3 - N § S -

e Pot 4 . -

i "
-~ . \'\
5 ! A

GRAVITATIONAL
LENSING

UNIVERSE

L ] N
\.\
L i
) N\
? v
/ﬂ’ O \
]

Measure galaxy shapes - Infer mass integrated
alOng line Of Sight </shameless
plug>



Two fields:
Galaxy over-density 0,(6)
Galaxy ellipticity e (0)

Three 2-point functions:

¢* Angular correlation function w(8)=<6,6,>
measures the clustering of “lens” galaxies

* Galaxy-galaxy lensing y,(6)=<6,e;>
measures the distortions in “source” galaxies by mass
associated with “lens” galaxies

¢ Shear correlation function ¢(8)=<e;e;>
measures the correlations between shapes of nearby

“source” galaxies due to similar distortions by line-of-sight
mass



DES is a Photometric Survey: 2D not 3D




Well-measured redshifts
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Two fields:
Galaxy over-density 0,(6)
Galaxy ellipticity e (0)

Three 2-point functions:

* Angular correlation function w(39)=<6,6 >
measures the clustering of “lens” galaxies



Measure Galaxy Clustering in each of
five redshift bins

Blue curve is
Standard
Model that
best fits all
the data

102
6 (arcmin)

DES: Elvin-Poole et al. 2017



Two fields:
Galaxy over-density 0,(6)
Galaxy ellipticity e (0)

Three 2-point functions:

* Galaxy-galaxy lensing y,(9)=<6 >
measures the distortions in “source” galaxies by mass
associated with “lens” galaxies



Measure Galaxy-Galaxy Lensing in 4 source
bins x 5 lens bins

» Distortions of
shapes of
background
galaxies due to
mass associated
with foreground
galaxies

* Sheds light on bias

» Sensitive to shape

100 200 100 200 100 200 100 200

measurements ¢ (arcmin) @ (arcmin) 6 (arcmin) € (arcmin)

DES: Judit Prat, Carles Sanchez et al. 2017



Two fields:
Galaxy over-density 0,(6)
Galaxy ellipticity e (0)

Three 2-point functions:

* Shear correlation function §(0)=<e.e;>
measures the correlations between shapes of nearby
“source” galaxies due to similar distortions by line-of-
sight mass



Gravitational Lensing: Shape correlations

Correlations of
shapes of
background
galaxies due to
all mass along
the line of
sight

Sensitive to
shape
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Independent
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DES Y1 Results: Power a bit lower then
the Standard Model predicts
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Clumpiness of the Universe
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This is only the beginning ...

We have 5 times the -
data in the can;
currently furiously
analyzing

Then comes LSST,
Euclid, WFIRST, DESI
Can measure at
many redshifts, not
just one

Growth rate = dInD / dlna

04 ' | - |

0 05 1 | 15
Redshift z



This is only the beginning ...
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Conclusions

Cosmology is in a new era:
¢+ Broaden dark matter searches
¢ Search for signatures of inflation (B-modes; PNG; running)

¢ Precision tests of LCDM; there is current tension in both distances
and growth. If LCDM fails, the most likely resolution is a new light
degree of freedom (quintessence or modified gravity)



