Increasing Discovery Potential Using Rare SUSY Scenarios

Gluinos

Linda Carpenter Ohio State University With Khalida Hendricks arXiv:1812.08406

Current Gluino Searches

Discovery Projections

Consider Alternative Production Single Gluino Produced with Weakino

Production XSecs

We consider the production of a gluino in conjunction with wino-like neutralinos

Evens samples were simulated in Madgraph, decayed in MadSpin, Showered in Pythia and run through detector simulation

Now consider kinematic distributions

Missing ET Distribution

 $E_{\mathrm{T}}^{\mathrm{miss}} = -\Sigma \overline{p_T}$

Di-jet invariant mass

$$m_{T0}^2 = (\Sigma E_T)^2 - (\Sigma \overline{p_T})$$

Cut Based Analysis

- Events must contain at least 2 jets in the central region of the detector $\eta < 2.5$
- Jets must have $p_T > 20 GeV$
- Events must have $E_{\rm T}^{\rm miss} \ge 500 \,\,{\rm GeV}$
- A dijet transverse mass discriminant $m_T = m_{T0}$ or m_{Ti} is constructed using only the two leading jets in the event
- the chosen m_T must fall in a kinematic window which varies with hypothesized gluino mass $M_g - \Delta < m_T < M_g + \Delta$ where Δ is $.5M_g$

$m_{\tilde{g}}$ 2.2 TeV					
cut	$ ilde{g}\chi_0$	$ ilde{g}\chi^-$	$ ilde{g}\chi^+$	Zjj	
none	10000	10000	10000	10000	Cut-Flow
inclusive m_{T0}	1511	2417	2509	94	
500 GeV $E_{\rm T}^{\rm miss}$	1048	1592	1645	11	
$m_{\tilde{g}}$ 1.0 TeV					
cut	$ ilde{g}\chi_0$	$ ilde{g}\chi^-$	$ ilde{g}\chi^+$	Zjj	
none	10000	10000	10000	10000	
inclusive m_{T0}	2269	4091	4259	1091	
$500 \text{ GeV} E_{T}^{\text{miss}}$	796	583	532	124	

mTi Variable

mT0 variable

Conclusion

- Gluino-Weakino is a clean signal with outstanding kinematic features large MET and transverse variables
- Conservative analysis shows discovery potential in this channel can be competitive or e with di-gluino production, and may exceed it for light squarks
- More sophisticated cuts in the MET- transverse mass plane, or fitting of edges may improve analysis more