Combined Higgs boson measurements at the ATLAS experiment

Giacomo Artoni on behalf of the ATLAS Collaboration

Higgs production and decay at the LHC (@13 TeV)

ATLAS has recently performed a very comprehensive combination of all the available channels, summarised in <u>ATLAS-CONF-2019-005</u>

In this talk:

- global signal strength measurement (ratios of the measured Higgs boson yields and their SM expectations)
- measurements of production cross sections
- measurements in kinematic regions defined within the simplified template cross section (STXS) framework
- measurements in the framework of multiplicative modifiers κ

Overview: input analyses

Analysis	Integrated luminosity (fb^{-1})
$H \to \gamma \gamma \text{ (including } t\bar{t}H, H \to \gamma \gamma)$	79.8
$H \to ZZ^* \to 4\ell \text{ (including } t\bar{t}H, H \to ZZ^* \to 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$	36.1
$H \to \tau \tau$	36.1
$VH, H \to b\bar{b}$	79.8
VBF, $H \to b\bar{b}$	24.5-30.6
$H \to \mu \mu$	79.8
$t\bar{t}H, H \to b\bar{b}$ and $t\bar{t}H$ multilepton	36.1
$H \rightarrow \text{invisible}$	36.1
Off-shell $H \to ZZ^* \to 4\ell$ and $H \to ZZ^* \to 2\ell 2\nu$	36.1

- Off-shell and $H \rightarrow$ invisible only used for results in the κ -framework
- $H \rightarrow \mu\mu$ used in the κ -framework and BSM interpretation
- \odot VBF, H→bb not used in the simplified template cross sections results

Signal strength: ratio of the total Higgs boson signal yield to its SM prediction

 $\mu = 1.11^{+0.09}_{-0.08} = 1.11 \pm 0.05 \,(\text{stat.})^{+0.05}_{-0.04} \,(\text{exp.})^{+0.05}_{-0.04} \,(\text{sig. th.}) \pm 0.03 \,(\text{bkg. th.})$

Uncertainty source	$\Delta \mu / \mu$ [%]
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
Signal	4.2
Background	2.6
Experimental uncertainties (excl. MC stat.)	4.1
Luminosity	2.0
Background modeling	1.6
Jets, $E_{\rm T}^{\rm miss}$	1.4
Flavour tagging	1.1
Electrons, photons	2.2
Muons	0.2
au-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

Production cross-sections

- Much smaller correlations with respect to previous analyses (<u>here</u> and <u>here</u>)
 - mild correlation between ggF and VBF (-15%) remaining
- Statistical and systematic uncertainties at the same level
- SM BR assumed here (and uncertainty included)
- bbH included in ggF, tH included in ttH, ggZH fully attributed to ZH
- Production cross-section times BR also measured (see backup)

Process	Value	Uncertainty [pb]				SM pred.	Significance	
$(y_H < 2.5)$	[pb]	Total	Stat.	Exp.	Sig. th.	Bkg. th.	[pb]	obs. (exp.)
ggF	46.5	± 4.0	± 3.1	± 2.2	± 0.9	± 1.3	44.7 ± 2.2	-
VBF	4.25	$^{+0.84}_{-0.77}$	$^{+0.63}_{-0.60}$	$^{+0.35}_{-0.32}$	$^{+0.42}_{-0.32}$	$^{+0.14}_{-0.11}$	3.515 ± 0.075	6.5(5.3)
WH	1.57	$^{+0.48}_{-0.46}$	$+0.34 \\ -0.33$	$^{+0.25}_{-0.24}$	$^{+0.11}_{-0.07}$	± 0.20	1.204 ± 0.024	$3.5 (2.7) \Big]_{5.3 (4.7)}$
ZH	0.84	$^{+0.25}_{-0.23}$	± 0.19	± 0.09	$+0.07 \\ -0.04$	± 0.10	$0.797^{+0.033}_{-0.026}$	$3.6 (3.6) \int 3.3 (4.7)$
$t\bar{t}H+tH$	0.71	$+0.15 \\ -0.14$	± 0.10	± 0.07	$^{+0.05}_{-0.04}$	$+0.08 \\ -0.07$	$0.586^{+0.034}_{-0.049}$	5.8(5.4)

Simplified template cross section (STXS)

- Main goal: reduce <u>model dependence</u> and <u>maximise sensitivity to BSM</u> <u>physics</u>, by measuring cross-sections per production mode in different phasespace regions
- Benefits greatly by the combination of all available decay channels!

Les Houches '15

YR4

- Staged" approach necessary, as these regions need to match the experimentally accessible ones
 - so-called "stage 1" used here, with some regions grouped due to limited experimental sensitivity

STXS results

- Here showing results with BR fixed to the SM expectation
- Also available (see backup):
 - cross sections times H→ZZ* BR (with further measurements of BR_f/BR_{ZZ})
 - finer granularity
- No significant deviation from SM expectations: p-value = 81%
- Large anti-correlation when crosscontaminations between processes in the experimental selections are present

ATLAS Preliminary Internet Stat. Syst. SM							
\sqrt{s} = 13 TeV, 36.1 - 79.8 fb ⁻¹							
$m_H = 125.09 \text{ GeV}, y_H < 2.5$							
p _{SM} = 81%							
		Total S	tat.	Syst.			
$gg \rightarrow H$, 0-jet	1.18	±0.13 (±0).10,	±0.09)			
$gg \rightarrow H$, 1-jet, $p_T^H < 60 \text{ GeV}$	0.53	+0.39 (+0).32).31 [,]	+0.22 -0.21)			
$gg \rightarrow H$, 1-jet, $60 \le p_T^H < 120 \text{ GeV}$	0.82	+0.33 (+0 -0.31 (-0).28).27 [,]	+0.17 -0.15)			
$gg \rightarrow H$, 1-jet, $120 \le p_T^H < 200 \text{ GeV}$	1.18	+0.68 -0.63 (+0).58).56 [,]	+0.36 -0.28)			
$gg \rightarrow H, \ge 1$ -jet, $p_T^H \ge 200 \text{ GeV}$	1.79	+0.62 -0.58 (+0).53).52'	+0.32 -0.26)			
$gg \rightarrow H, \ge 2$ -jet, $p_T^H < 200 \text{ GeV}$	1.02	+0.48 -0.45 (+0).39).38'	+0.29 -0.24)			
$qq \rightarrow Hqq$, VBF topo + Rest	1.37	+0.32 -0.30 (+0).25).24 [,]	+0.21 -0.18)			
$qq \rightarrow Hqq$, VH topo	-0.11	+1.19 -1.00 (+1 -0	.15).98 [,]	+0.29 -0.21)			
$qq \rightarrow Hqq, p_T^i \ge 200 \text{ GeV}$	-0.88	+1.30 -1.28 (+1 -1	.15 .10'	+0.61 -0.64)			
$qq \rightarrow HIv, p_T^V < 250 \text{ GeV}$	1.70	+0.75 (+0 -0.71 (_0).57).56 [,]	+0.48 _0.44)			
$qq \rightarrow HI\nu, p_T^V \ge 250 \text{ GeV}$	1.14	+0.72 -0.68 (+0).61).57'	+0.39 -0.37)			
				+0.52			
$gg/qq \rightarrow HII, p_{\tau}^{v} < 150 \text{ GeV}$	0.85	-0.79 (-0).61 [,]	-0.49)			
$gg/qq \rightarrow HII$, $150 \le p_T^V < 250 \text{ GeV}$	0.62	±0.68 (⁺⁰ _().57).56 [,]	±0.38)			
$gg/qq \rightarrow HII, p_T^V \ge 250 \text{ GeV}$	H 1.84	+0.94 -0.82 (+0 -0).81).77 [,]	+0.47 _0.29)			
		+0.26		+0.20			
	1.20	_0.24 (±0).17,	-0.18)			
		<u> </u>					
	eter nori	- malized t	to SN	∕l value			

к-framework

- Study modifications of the Higgs boson couplings related to BSM physics
- Assume production and decay can be factorised
- Cross section times branching fraction parametrised as

$$\sigma_i \times \mathbf{B}_f = \frac{\sigma_i(\boldsymbol{\kappa}) \times \Gamma_f(\boldsymbol{\kappa})}{\Gamma_H}$$

Coupling strength modifiers defined as

$$\kappa_j^2 = rac{\sigma_j}{\sigma_j^{\mathrm{SM}}}$$
 or $\kappa_j^2 = rac{\Gamma_j}{\Gamma_j^{\mathrm{SM}}}.$

Higgs boson total width also modified:

$$\kappa_H^2 = \sum_j \mathbf{B}_f^{\text{SM}} \kappa_j^2 \qquad \Gamma_H(\boldsymbol{\kappa}, \mathbf{B}_{\text{inv}}, \mathbf{B}_{\text{undet}}) = \frac{\kappa_H^2(\boldsymbol{\kappa})}{(1 - \mathbf{B}_{\text{inv}} - \mathbf{B}_{\text{undet}})} \Gamma_H^{\text{SM}}$$

• LHC data insensitive to κ_c and κ_s (assumed here to vary like κ_t and κ_b , respectively)

Fermion and gauge boson couplings

■ Kv=Kw=Kz and KF=Kt=Kb=Kτ=Kµ

- no invisible or undetected decay assumed
- only relative sign is physical, and a negative sign has already been excluded

 $\kappa_V = 1.05 \pm 0.04$ $\kappa_F = 1.05 \pm 0.09$

- no deviation from the SM prediction
- Inear correlation of 44% observed in combined measurement

- Measure K_g and K_γ to probe for BSM effects in loops and decays
- All other coupling strength modifiers fixed to their SM values
- Either assuming no invisible or undetected decay (B_{inv}=B_{undet}=0), or including B_{inv} and B_{undet} as free parameters

Coupling to different particles

 Coupling strengths to W, Z, t, b, τ and μ treated independently

$$y_{V,i} = \sqrt{\kappa_{V,i} \frac{g_{V,i}}{2v}} = \sqrt{\kappa_{V,i} \frac{m_{V,i}}{v}}$$

$$y_{F,i} = \kappa_{F,i} \frac{g_{F,i}}{\sqrt{2}} = \kappa_{F,i} \frac{m_{F,i}}{v}$$

 assuming no BSM contributions to the Higgs decays, and SM loop structure for ggF, H→γγ and H→gg

Parameter	Result
κ_Z	1.10 ± 0.08
κ_W	1.05 ± 0.08
κ_b	$1.06_{-0.18}^{+0.19}$
κ_t	$1.02_{-0.10}^{+0.11}$
$\kappa_{ au}$	1.07 ± 0.15
κ_{μ}	< 1.51 at 95% CL.

Conclusions

- Measurement of Higgs boson production cross sections and branching ratios performed based on up to 79.8 fb-1 recorded during LHC's Run 2
- Global signal strength: $\mu = 1.11^{+0.09}_{-0.08}$
- Observation of all main LHC Higgs production modes
 - VBF, VH and ttH production mode significances of 6.5σ, 5.3σ and 5.8σ, respectively
- Comprehensive STXS measurement based on all major Higgs decay channels
- Data also interpreted using κ framework and BSM models
- No significant deviation from the SM!
 - Increased precision (up to a factor 2) can be reached with full Run 2 results and ATLAS-CMS combination

Backup Slides (to be completed)

Production cross sections: correlations

Products of production cross sections and branching ratios

AILAS Preliminary $\sqrt{s} = 13 \text{ TeV} 24.5 - 79.8 \text{ fb}^{-1}$	Stat. 🛑 Sy	st. 📕 SM
$m_H = 125.09 \text{ GeV}, y_{\perp} < 2.5$		
$p_{SM}^{H} = 71\%$	Total S	tat. Syst.
ggF γγ 📥	0.96 ± 0.14 (±	$0.11, \begin{array}{c} + 0.09 \\ - 0.08 \end{array}$
ggF ZZ	1.04 ^{+0.16} _{-0.15} (±	0.14 , ± 0.06)
ggF WW 📥	1.08 ± 0.19 (±	0.11, ±0.15)
ggFττ μ	0.96 + 0.59 (+	$\begin{array}{ccc} 0.37 & + 0.46 \\ 0.36 & - 0.38 \end{array}$
ggF comb.	1.04 ± 0.09 (±	0.07 , $^{+0.07}_{-0.06}$)
VBF γγ μπατι	1.39 + 0.40 (+	0.31 + 0.26 0.30 , - 0.19)
VBF ZZ	2.68 + 0.98 + 0.98 + - 0.83 + -	0.94 + 0.27 0.81 , - 0.20)
	0.59 + 0.36 (+	0.29 0.27, ± 0.21)
	1.16 + 0.58 + 0.53 + +	$\begin{array}{ccc} 0.42 & + 0.40 \\ 0.40 & - 0.35 \end{array}$
VBF bb	3.01 + 1.67 (+	1.63 + 0.39 1.57 , - 0.36)
VBF comb. 😑	1.21 +0.24 (+	0.18 + 0.16 0.17, - 0.13)
VH γγ μ	1.09 + 0.58 (+	0.53 + 0.25 0.49 , - 0.22)
VH ZZ	0.68 + 1.20 (+	1.18 + 0.18 0.77, - 0.11)
VH bb 🔤	1.19 + 0.27 (+	0.18 + 0.20 0.17 , - 0.18)
VH comb.	1.15 ^{+0.24} _{-0.22} (±	0.16 , $^{+0.17}_{-0.16}$)
ttH+tH γγ	1.10 +0.41 (+	$(0.36) + 0.19 \\ (0.33) - 0.14)$
ttH+tH VV	1.50 + 0.59 + 0.59 + - 0.57 + -	$\begin{array}{ccc} 0.43 & + 0.41 \\ 0.42 & - 0.38 \end{array}$
ttH+tH ττ μ	1.38 + 1.13 (+	$\begin{array}{ccc} 0.84 & + 0.75 \\ 0.76 & - 0.59 \end{array}$
ttH+tH bb	0.79 ^{+0.60} _{-0.59} (±	0.29 , ± 0.52)
<i>ttH+tH</i> comb. I ■	1.21 ^{+0.26} _{-0.24} (±	0.17 , $^{+0.20}_{-0.18}$)
2 0 2 4	6	8
Parameter normaliz	zed to SI	<i>A</i> value

Products of production cross sections and branching ratios

Process	Value	Uncertainty [fb]					SM pred.
$(y_H < 2.5)$	[fb]	Total	Stat.	Exp.	Sig. th.	Bkg. th.	[fb]
ggF, $H \rightarrow \gamma \gamma$	97	± 14	±11	± 8	± 2	$^{+2}_{-1}$	101.5 ± 5.3
ggF, $H \to ZZ^*$	1230	$^{+190}_{-180}$	± 170	± 60	± 20	± 20	1181 ± 61
ggF, $H \to WW^*$	10400	± 1800	± 1100	± 1100	± 380	$^{+960}_{-870}$	9600 ± 500
ggF, $H \to \tau \tau$	2700	$^{+1700}_{-1500}$	± 1000	± 920	$^{+810}_{-310}$	$+390 \\ -420$	2800 ± 140
VBF, $H \rightarrow \gamma \gamma$	11.1	$+3.2 \\ -2.8$	$^{+2.5}_{-2.4}$	$^{+1.4}_{-1.0}$	$^{+1.5}_{-1.1}$	$^{+0.3}_{-0.2}$	7.98 ± 0.21
VBF, $H \to ZZ^*$	249	$^{+91}_{-77}$	$^{+87}_{-75}$	$^{+16}_{-11}$	$^{+17}_{-12}$	$^{+9}_{-7}$	92.8 ± 2.3
VBF, $H \to WW^*$	450	$^{+270}_{-260}$	$^{+220}_{-200}$	$^{+120}_{-130}$	$^{+80}_{-70}$	$^{+70}_{-80}$	756 ± 19
VBF, $H \to \tau \tau$	260	$^{+130}_{-120}$	± 90	$^{+80}_{-70}$	$^{+30}_{-10}$	$^{+30}_{-20}$	220 ± 6
VBF, $H \to b\bar{b}$	6100	$+3400 \\ -3300$	$+3300 \\ -3200$	$+700 \\ -600$	± 300	± 300	2040 ± 50
$VH, H \rightarrow \gamma \gamma$	5.0	$^{+2.6}_{-2.5}$	$^{+2.4}_{-2.2}$	$^{+1.0}_{-0.9}$	± 0.5	± 0.1	$4.54_{-0.12}^{+0.13}$
$VH, H \to ZZ^*$	36	$^{+63}_{-41}$	$^{+62}_{-41}$	$^{+5}_{-4}$	$^{+6}_{-4}$	$^{+4}_{-2}$	52.8 ± 1.4
$VH, H \to b\bar{b}$	1380	$^{+310}_{-290}$	$^{+210}_{-200}$	± 150	$^{+120}_{-80}$	± 140	1162^{+31}_{-29}
$t\bar{t}H+tH, H \rightarrow \gamma\gamma$	1.46	$+0.55 \\ -0.47$	$+0.48 \\ -0.44$	$^{+0.19}_{-0.15}$	$^{+0.17}_{-0.11}$	± 0.03	$1.33^{+0.08}_{-0.11}$
$t\bar{t}H+tH, H \to VV^*$	212	$+84 \\ -81$	$^{+61}_{-59}$	$^{+47}_{-44}$	$^{+17}_{-10}$	$^{+31}_{-30}$	142^{+8}_{-12}
$t\bar{t}H+tH, H \rightarrow \tau\tau$	51	$+41 \\ -35$	$^{+31}_{-28}$	$^{+26}_{-21}$	$^{+6}_{-4}$	$^{+8}_{-6}$	$36.7^{+2.2}_{-3.1}$
$t\bar{t}H+tH, H \to b\bar{b}$	270	± 200	± 100	± 80	$+40 \\ -10$	$+150 \\ -160$	341^{+20}_{-29}

Cross sections times H→ZZ* BR

Cross sections times $H \rightarrow ZZ^*$ BR (correlations)

Cross sections times $H \rightarrow ZZ^*$ BR (finer granularity)

Cross sections times $H \rightarrow ZZ^*$ BR (finer granularity)

