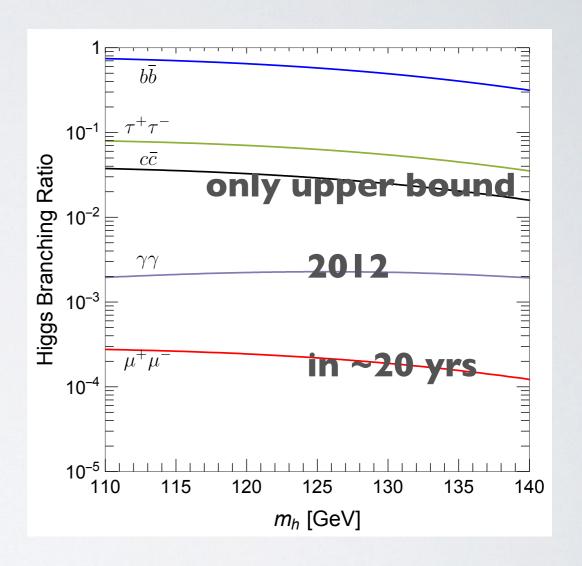


Charm-quark Yukawa Coupling in $h ightarrow c \overline{c} \gamma$ at LHC

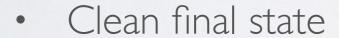
Xing Wang University of Pittsburgh

Pheno 2019, Pittsburgh May 7, 2019


Higgs Coupling Status

- All 3rd-gen Yukawa couplings observed with 5σ .
- Consistency check of the SM.

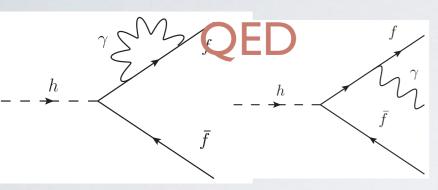
2nd-Gen Yukawa


- · Confirm the Higgs mechanism.
- $h \to \mu^+ \mu^-$ at 9σ at HL-LHC.
- $h \to c\bar{c}$ has large BR but difficult at hadron colliders.

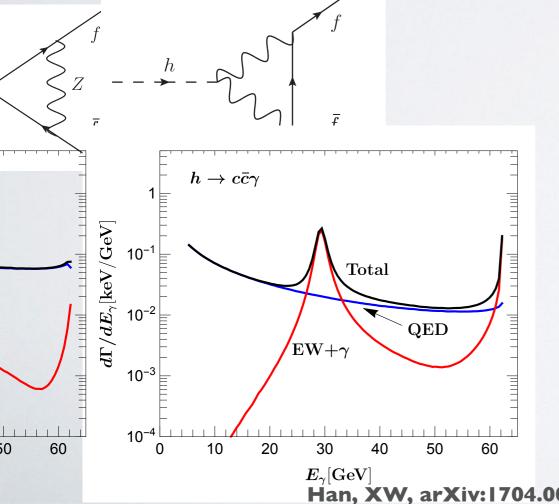
· Lepton colliders like ILC/CEPC are the best place.

Charm Yukawa at LHC

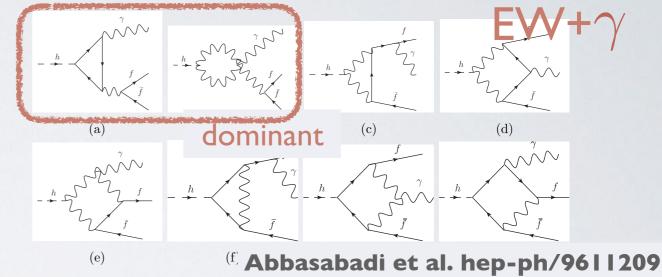
- $pp \to Zh \to (\ell\ell) \, (c\bar{c})$ (see Calvetti's talk)
 - c-tagging required.
 - Best chance so far, ~3 times of the SM Yukawa. ATL-PHYS-PUB-2018-016
 - Degenerate with $h \to b \bar b$
- $h o J/\psi \, \gamma o \ell\ell \gamma$ Bodwin et al. arXiv:1306.5770



- Tiny BR~10-7.
- Less sensitive due to vector meson dominance, ~ 50 times.


 ATL-PHYS-PUB-2015-043
- $h o c \bar c \gamma$ (this talk) Han, XW, arXiv:1704.00790 Han, Nachman, XW, arXiv:1812.06992
- •

$h \to c\bar{c}\gamma$


* QED radiation at $\mathcal{O}(y_f^2\alpha)$

* Yukawa counling

* EW-loop-induced diagrams at $\mathcal{O}(y_t^2\alpha^3, \alpha^4)$

- No Yukawa couplings.
- Chirality-conserving.

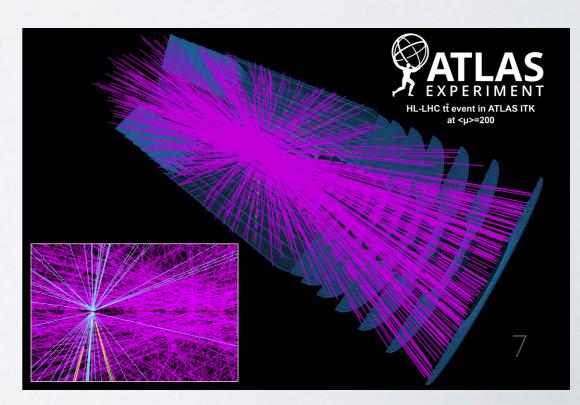
- Photon helpful for trigger --- ggF.
- Down-type quark suppressed.

Trigger

Not all data recorded at LHC.

```
pp collision @40 MHz \Rightarrow L1 trigger @100 kHz \Rightarrow HLT @1 kHz (HL-LHC projection) \Rightarrow L1 trigger @ 1 MHz \Rightarrow HLT @ 10 kHz
```

- Large background from $pp \to jj\gamma, jjj$
- We propose a new trigger for $h o c \bar c \gamma$


$$p_{Tj} > 27 \text{ GeV}, \ p_{T\gamma} > 20 \text{ GeV},$$

 $|\eta| < 2.5, \text{ and } \Delta R > 0.4$
 $90 \text{ GeV} < M_{jj\gamma} < 160 \text{ GeV}.$

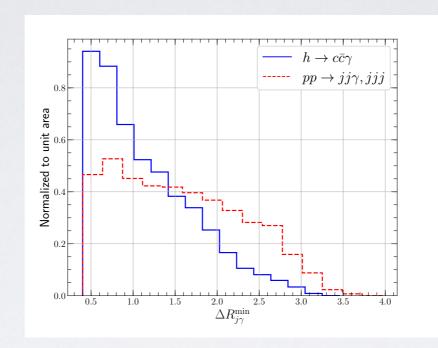
Trigger

- Not all data recorded at LHC.
 - pp collision @40 MHz \Rightarrow L1 trigger @100 kHz \Rightarrow HLT @1 kHz (HL-LHC projection) \Rightarrow L1 trigger @ 1 MHz \Rightarrow HLT @ 10 kHz
- Large background from $pp \to jj\gamma, jjj$
- We propose a new trigger for $h \to c \bar c \gamma$

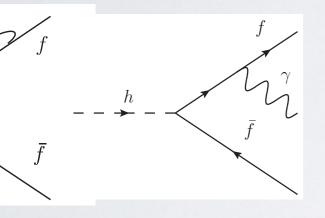
$$p_{Tj} > 27 \text{ GeV}, \ p_{T\gamma} > 20 \text{ GeV},$$

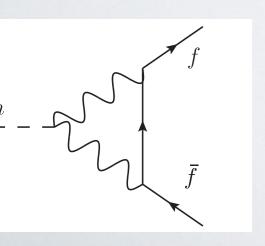
 $|\eta| < 2.5, \text{ and } \Delta R > 0.4$
 $90 \text{ GeV} < M_{jj\gamma} < 160 \text{ GeV}.$

$$r_c = \frac{\sum p_T^{\text{track}}}{p_T^{\text{jet}}} > 0.2$$



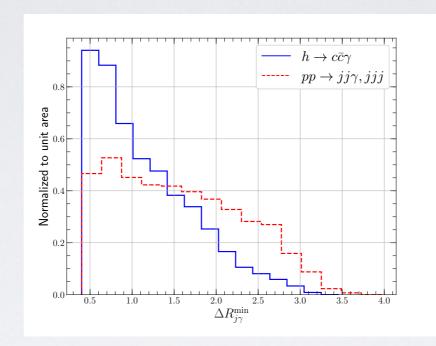
Result


Event selection

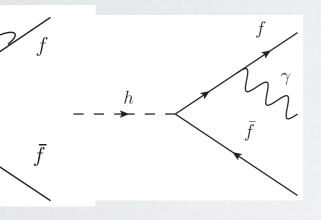

$$p_{Tj}^{
m max} > 40~{
m GeV}$$

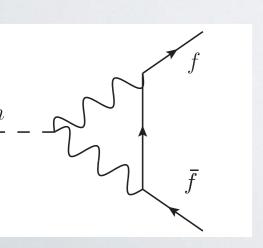
$$\Delta R_{j\gamma}^{
m min} < 1.8$$

ATLAS, arXiv:1802.0432						
Operating Point	ϵ_c ϵ_b		ϵ_j			
I	20%	33%	0.13%			
II	30%	33%	1%			
III	41%	50%	$\left 3.3\% \right $			


	Working	Signal Background		Background	$S/\sqrt{S+B}$
	Point	(QED)	events	event rate [Hz]	$[10^{-2}]$
Level-1 (L1)	No Tag	-	-	9.55×10^3	-
	I	269	3.37×10^{8}	5.62	1.47
1 <i>c</i> -tag	II	349	5.18×10^8	8.63	1.54
	III	401	8.83×10^{8}	14.7	1.35
	I	29	1.14×10^7	0.191	0.878
2 c-tags	II	66	2.23×10^7	0.371	1.42
	III	126	5.79×10^7	0.966	1.66

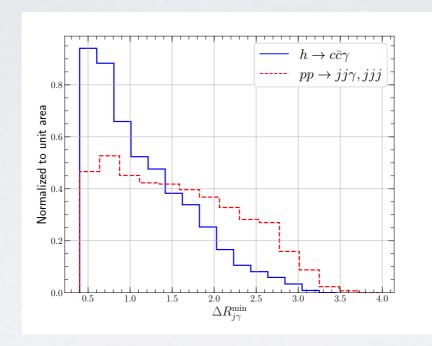
Result


Event selection

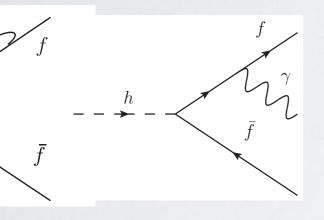

$$p_{Tj}^{
m max} > 40~{
m GeV}$$

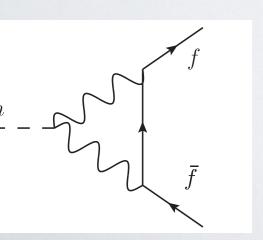
$$\Delta R_{j\gamma}^{
m min} < 1.8$$

AT	LAS, a	rXiv:18	02.04329
Operating Point	ϵ_c	ϵ_b	ϵ_j
I	20%	33%	0.13%
II	30%	33%	1%
III	41%	50%	3.3%



	Working	Signal	Background	Background	$S/\sqrt{S+B}$	
	Point	(QED)	events	event rate [Hz]	$[10^{-2}]$	
Level-1 (L1)	No Tag	-	<u>-</u>	9.55×10^3		an 1% of the bandwidth
	I	269	3.37×10^{8}	5.62	1.47	
1 <i>c</i> -tag	II	349	5.18×10^{8}	8.63	1.54	
	III	401	8.83×10^{8}	14.7	1.35	
	I	29	1.14×10^7	0.191	0.878	
2 c-tags	II	66	2.23×10^7	0.371	1.42	
	III	126	5.79×10^7	0.966	1.66	9

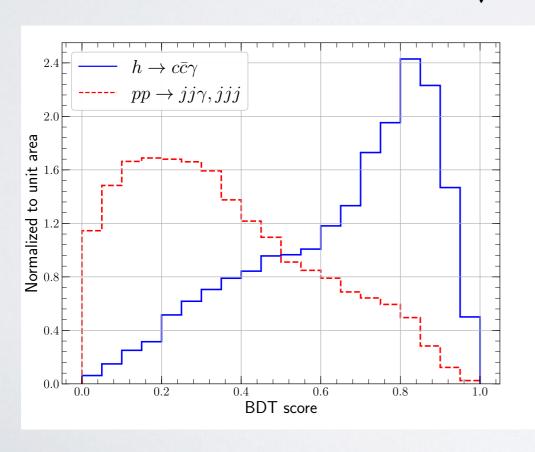

Result


Event selection

$$p_{Tj}^{
m max} > 40~{
m GeV}$$
 $\Delta R_{j\gamma}^{
m min} < 1.8$

ATLAS, arXiv:1802.0432					
Operating Point	ϵ_c	ϵ_b	ϵ_j		
I	20%	33%	0.13%		
II	30%	33%	1%		
III	41%	50%	3.3%		

	Working	Signal	Background	Background	$S/\sqrt{S+B}$	
	Point	(QED)	events	event rate [Hz]	$[10^{-2}]$	
Level-1 (L1)	No Tag	-	-1	9.55×10^3		an 1% of the bandwidth
	I	269	3.37×10^{8}	5.62	1.47	
1 <i>c</i> -tag	II	349	5.18×10^{8}	8.63	1.54	
	III	401	8.83×10^{8}	B/S ~ 10 ⁵ -	1.35	
	I	29	1.14×10^7	0.191	0.878	
2 c-tags	II	66	2.23×10^{7}	0.371	1.42	
	III	126	5.79×10^7	0.966	1.66	10


Bound on Yukawa Coupling

· Parametrize the modification of charm Yukawa as

$$y_c^{\rm BSM} = \kappa_c y_c^{\rm SM} \implies N_{\rm sig} \simeq \kappa_c^2 N_{\rm sig,QED}^{\rm SM}$$

At 95% CL_S and in the absence of systematics

$$\kappa_c = \sqrt{\mu} < 10.4, 9.4, 9.3$$

 Optimized using Boosted Decision Tree (BDT)

$$\kappa_c < 9.6, 8.8, 8.6$$

Summary

- Probing the charm-quark Yukawa coupling in $h
 ightarrow c ar c \gamma$
- Novel triggering strategy proposed.
- About 8 times of the SM value at 2σ level at the HL-LHC.