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Traditional and boosted searches at the LHC also
need precise QCD predictions.
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Its good to have an indoor project




NNLO HADRON-COLLIDER CALCULATIONS VS. TIME
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N3LO is still something
we are learning to do!

N°LO HADRON-COLLIDER CALCULATIONS VS. TIME
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Coefficient of N3LO correction to the width is
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Coefficient of N3LO correction to the width is

d AFNSLO /

H—>bb “triple-virtual” 3-loops, 2 partons

drYVV_Fy (9y)dds

real double-virtual (2-loops 3 partons)

double real virtual (1-loops 4 partons)
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Coefficient of N3LO correction to the width is
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m (<I> ) defines the measurement function and tell us how to
*”" make m-jets out of i partons.
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The measurement function adds nearly all of the complexity. If I’'m only
Interested in the total decay rate | can remove it and obtain the inclusive
(partial) width.

Can obtain the inclusive partial width coefficient by using the optical theorem
applied to the 4-loop two-point correlator

3
TE.{)_%E = s34 L (25200 + 5181 + 2527, + 2517, + 277)
+L* (5185 + 351807 + B1vm + 251(V)” + 2807 + 47 V)

2 4
+ L3 <§ BayY + 28 (72 )% + —(v?n)3> . Chetyrkin hep-ph/9608318
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The measurement function makes life difficult since it exposes us to a
multitude of Infrared singularities, which exist in the individual parton phase
spaces, but cancel upon combination into a suitably inclusive observable.

For example consider the triple-soft limit in which all of the gluons in this
diagram have vanishing momentum.




G university at Buffalo Infrared issues

The measurement function makes life difficult since it exposes us to a
multitude of Infrared singularities, which exist in the individual parton phase
spaces, but cancel upon combination into a suitably inclusive observable.

For example consider the triple-soft limit in which all of the gluons in this

diagram have vanishing momentum.
E x Eik

», Kinematically this factors
onto the LO phase space

=



G university at Buffalo Infrared issues

The measurement function makes life difficult since it exposes us to a
multitude of Infrared singularities, which exist in the individual parton phase
spaces, but cancel upon combination into a suitably inclusive observable.

For example consider the triple-soft limit in which all of the gluons in this

diagram have vanishing momentum.
E x Eik

p Kinematically this factors

7 ontotheLO phase space
But the color is /\<§

still present! »>—
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G university at Buffalo Projection to Born

There is no one set technique for dealing with IR issues at either NLO, NNLO or N3LO.

We’'re going o use Projection to Born Method (Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660)
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G university at Buffalo Projection to Born

There is no one set technique for dealing with IR issues at either NLO, NNLO or N3LO.

We’'re going o use Projection to Born Method (Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660)

Subtract
Counterterm

(massive jet) .
(Single parton)

A

M x (H) — Mm% x (H)

A

Cluster

(Single parton) (Single parton)

. 2
Generated event with |_/\/l | F25 ((1)5) F22 ((I)B)
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M| x (F§(®5) — F3(@5))

Cancels exactly when the full phase space
matches the projected born one.
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G university at Buffalo Projection to Born

M| x (F§(®5) — F3(@5))

Cancels exactly when the full phase space
matches the projected born one.

This is exactly the triple unresolved region.

Does not cancel exactly when only partons are
unresolved (e.g. two gluons are soft)

This is an NNLO calculation.

So ingredient 1 for a projection to Born Method is an NNLO
calculation of H=>3j (Mondini’s talk)
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G university at Buffalo Projection to Born

We just arbitrarily subtracted a counterterm.

On its own this is not cool, since it is not part of the SM, just a regulator.

We had better reintroduce it.
However now we’re going to explicitly integrate out the phase space

If we integrate over all the projected Born phase space, we’ll just recover the
inclusive width (multiplying a LO phase space factor)

So ingredient 2 for a projection to Born Method is the inclusive
partial width (cross section) as a function of the LO kinematics.

Chetyrkin hep-ph/9608318
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G university at Buffalo LO Phase space

H=>bb at LO is super trivial, two massless partons back to back.

We want some interesting observables at LO to test the IR
cancellations in our code, so we introduce a fictitious collision axis,

and measure relative to that.

Y

Now we can define pt and rapidity like at the LHC.

We cluster with the Durham jet algorithm
(ask your academic grandparents)
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The size of corrections are observable dependent, scale variation is tiny
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Results

Corrections to “real” observables
are a little different.

Three regions :

1)6 () all phases spaces
contribute, small uncertainty

2) Bulk, 3 parton+ phase spaces
contribute, NNLO style scale
variation

3) Tail 4 parton+ phase spaces
contribute, looks like NLO scale
variation
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G university at Buffalo Conclusions

o We computed N3LO corrections to H=>bb

o We used the projection to Born method +
N-jettiness slicing to deal with the |-
singular structure

i

o Our calculation is fully differential and could
be deployed out of the rest frame for LHC/
FCC applications.

o Differential effects at N3LO are larger than
small inclusive ones.
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Durham Jet

2 min(E?, EJQ)(l — cos 0;4)
Yij — QQ 9
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NNLO Validation
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N3LO Validation
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