ATLAS Searches for VH/HH Resonances

Tyler James Burch on behalf of the ATLAS Experiment

Pheno 2019 University of Pittsburgh May 6-8, 2019

Northern Illinois University

Motivation

The discovery of the Standard Model Higgs boson gives a powerful tool to search for new physics

 Massive particles interact with the Higgs field, natural place to search for resonances from physics beyond the Standard Model

Heavy Vector Triplets (HVT)

Addition of SU(2) Heavy Vector Triplet: W'+,W'-,Z'

Can be strongly coupled at high energy scale (Little Higgs, Composite Higgs)

Can answer **naturalness** problem

Two-Higgs Doublet Models (2HDM)

Addition of a second Higgs doublet gives 5 scalar states:

- h CP-even Higgs boson
- H CP-even Heavy Higgs
- H[±] Charged Higgs
- A CP-odd pseudoscalar

Can answer questions like **baryogensis**, dark matter

Randall-Sundrum Model

Warped Extra Dimensions model including spin-2 graviton, G_{KK} Addresses **hierarchy** problem

ATLAS Searches for VH/HH Resonances

ATLAS Searches for VH/HH Resonances

Semi-Leptonic VH

J. High Energ. Phys. (2018) 2018: 51 All units on page are GeV

Pass 70% efficient b-tagging algorithm (MV2c10)

Resolved:

- Require m_{jj} between 110-140 GeV for the 0 and 1 lepton categories, 110-140 for 2 lepton
- Sensitive below 1 TeV

Boosted:

- Require m_J between 75-145 GeV
- Sensitive above 1 TeV

iel:

Channel	Dominant Backgrounds
0-lepton	Z+jets, ttbar
1-lepton	ttbar, single-top, W+jets
2-lepton	Z+jets, ttbar

ATLAS Searches for VH/HH Resonances

Semi-Leptonic VH

Fit m_{Vh} as the figure of merit

- In 0-lepton categories, where Zh cannot be reconstructed, fit $m_{T,Vh} = \sqrt{(E_T^h + E_T^{miss})^2 (\overrightarrow{p}_T^h + E_T^{miss})^2}$
- In 1-lepton categories, the momentum of the neutrino is obtained by imposing a W mass constraint

1-lepton

Resolved

2-lepton

ATLAS Searches for VH/HH Resonances

T.Burch (NIU)

0-lepton

Semi-Leptonic VH

J. High Energ. Phys. (2018) 2018: 51

Fit m_{Vh} as the figure of merit

- In 0-lepton categories, where Zh cannot be reconstructed, fit $m_{T,Vh} = \sqrt{(E_T^h + E_T^{miss})^2 (\overrightarrow{p}_T^h + E_T^{miss})^2}$
- In 1-lepton categories, the momentum of the neutrino is obtained by imposing a W mass constraint

Boosted

ATLAS Searches for VH/HH Resonances

Phys. Lett. B 774 (2017) 494-515

Fully Hadronic VH $VH \rightarrow q\bar{q}b\bar{b}$

Search at m_{VH} > 1 TeV, so probe **boosted** topologies Search for **2 large R jets**

Higgs decay jet:

m_J between 75 and 145 GeV (90% efficient) b-tagging requirements (77% efficient)

Vector Boson decay jet:

m_w between 67 and 95 GeV m_z between 75 and 107 GeV D₂ selection (50% efficient, 2% multijet contamination) - Substructure variable to distinguish 2-prong jets, more <u>here</u>

ATLAS Searches for VH/HH Resonances

Fully Hadronic VH

Predominant background is from multijet events - modeled directly from data

Use 0-tag sample, correct for kinematic differences in tagged regions, normalize using sidebands

Fit consistent with background-only hypothesis

- Largest deviation is in the ZH signal ~3 TeV
 - Local significance = 3.3σ
 - Global significance = 2.1σ

ATLAS Searches for VH/HH Resonances

VH Combination

A combination of VH searches uses Heavy Vector Triplet models as benchmarks

Lower limits on resonance mass [TeV]				
	Observed	Expected	Model Discription	
Model A	2.8	3.1	BR to fermions and gauge bosons are comparable	
Model B	3.0	3.4	fermionic couplings are suppressed	

- bbγγ, bbττ, bbbb
- Combination

- Models - 2HDM, Randall-Sundrum

Three predominant channels contribute to combined analysis

Take advantage of high branching ratios and resolution of decay products

 $HH \rightarrow b\bar{b}\gamma\gamma$

Fix m_{bb} to 125 GeV, cut $m_{\gamma\gamma}$ between 120 and 130 GeV,

perform S+B fit in $m_{\gamma\gamma jj}$

Continuum $m_{\gamma\gamma}$ spectra background estimated from data Particularly sensitive at low masses

JHEP 11 (2018) 040

ATLAS Searches for VH/HH Resonances

Three predominant channels contribute to combined analysis

- Take advantage of high branching ratios and resolution of decay products

$HH \rightarrow b \bar{b} \gamma \gamma$

Fix m_{bb} to 125 GeV, cut $m_{\gamma\gamma}$ between 120 and 130 GeV, perform S+B fit in $m_{\gamma\gamma}$ ji

Continuum $m\gamma\gamma$ spectra background estimated from data Particularly sensitive at low masses

$HH \to b \bar{b} \tau \tau$

Train BDT to discriminate signal from backgrounds, fit BDT score distributions

- Dominant backgrounds: multijet, $t\bar{t}$, $Z \rightarrow \tau \tau$
- Separate BDT for each mass hypothesis

Three predominant channels contribute to combined analysis

Take advantage of high branching ratios and resolution of decay products

$HH \rightarrow b \bar{b} \gamma \gamma$

Fix m_{bb} to 125 GeV, cut $m_{\gamma\gamma}$ between 120 and 130 GeV,

perform S+B fit in m_{yyjj}

Continuum $m\gamma\gamma$ spectra background estimated from data Particularly sensitive at low masses

$HH ightarrow b \bar{b} \tau \tau$

Train BDT to discriminate signal from backgrounds, fit BDT score distributions

- Dominant backgrounds: multijet,
- Separate BDT for each mass hypothesis

$HH \rightarrow b\bar{b}b\bar{b}$

S+B fit to m_{4j} (m_{2J}) in the resolved (boosted) selection Multijet background estimated from data Especially sensitive in high mass region

ATLAS Searches for VH/HH Resonances

JHEP 01 (2019) 030

Di-Higgs Combination

Combine channels to set limits on resonant HH production

Set limits on scalar resonance corresponding to CP-even heavy higgs in hMSSM (2HDM)

hMSSM model with tan β = 2, 260 < m_H/GeV< 462 is excluded at 95% CL

ATLAS Searches for VH/HH Resonances

T.Burch (NIU)

ATLAS-CONF-2018-043

Di-Higgs Combination

Combine channels to set limits on resonant HH production

Set limits on spin-2 resonance, corresponding to KK-graviton in Randall-Sundrum model

ATLAS-CONF-2018-043

ATLAS-CONF-2018-043

ATLAS Searches for VH/HH Resonances

Conclusion

ATLAS searches for resonances decaying to VH or HH at 36.1 fb⁻¹ have been presented

- VH searches set limits on Heavy Vector Triplet models
 - Semileptonic, fully hadronic, combination analyses presented
 - Lower observed limit of 2.8 TeV if branching ratio to fermions and gauge bosons are comparable
 - Lower observed limit of 3.0 TeV if fermionic couplings are suppressed
- HH searches set limits on Two-Higgs Doublet and Randall-Sundrum models
 - Individual channels $bb\gamma\gamma$, $bb\tau\tau$, bbbb and newest combination results presented
 - $260 < m_H/GeV < 462$ is excluded at 95% CL in 2HDM
 - $307 < m_{GKK}/GeV < 1362$ excluded for $k/M_{pl} = 1.0$ in RS model
 - $m_{GKK} < 1744$ GeV excluded for k/M_{pl} = 2.0 in RS model

Full Run 2 versions of these analyses with 140 fb⁻¹ are underway!