Searches for non-resonant new phenomena in final states with leptons, photons, and jets at CMS

Chris West

University of Alabama

on behalf of the CMS Collaboration

Overview

- Will describe three analyses sensitive to nonresonant new physics
- Interpreted in a large variety of new physics models!

Final state	Large extra dimensions	Clockwork model	Contact interactions	Quantum black holes	Dark matter
YY EXO_17_017	V	V			
ee + μμ <u>EXO_17_025</u>	V		•		
Dijet <u>EXO_16_046</u>	V		~	~	V

✓ = interpretation available in paper

This talk will focus mostly on large extra dimensions, contact interactions and dark matter

Analysis of diphoton channel

- Analysis selection
 - Photon p_T > 75 GeV
 - m_{vv} > 500 GeV
 - Two η categories
 - Two photons in ECAL barrel (EB)
 - 1 photon in barrel, 1 in ECAL endcap (EE)
- Background prediction
 - NNLO k-factor from MCFM 8.0 applied to real diphoton prediction from Sherpa γγ + 3 jets at LO
 - Both calculated with CT10 PDFs
 - Separate k-factors for barrel-barrel and barrelendcap
 - NNLO/NLO difference taken as additional systematic
 - Fake photon contributions estimated from data sidebands
 - Fit allows floating EB-EB and EB-EE normalizations

Ratio of MCFM prediction to Sherpa LO

k-factor up to ~1.7 in region <2 TeV with nonzero data

Post-fit yy results

Prediction consistent within systematics prior to fit ⇒ perform fit

Barrel-barrel

Barrel-endcap

Diphoton channel limits

ADD model can be parameterized by convention-dependent higher dimension operator

Signal	GRW	Hev	vett	HLZ					
Jigitai		negative	positive	$n_{\rm ED}=2$	$n_{\rm ED}=3$	$n_{\rm ED}=4$	$n_{\rm ED}=5$	$n_{\rm ED}=6$	$n_{\rm ED}=7$
Expected	$7.1_{-0.5}^{+0.7}$	$5.5^{+0.1}_{-0.3}$	$6.3^{+0.6}_{-0.4}$	$8.4^{+1.3}_{-1.1}$	$8.4_{-0.6}^{+0.8}$	$7.1_{-0.5}^{+0.7}$	$6.4_{-0.5}^{+0.6}$	$6.0_{-0.4}^{+0.6}$	$5.6^{+0.6}_{-0.4}$
Observed	7.8	5.6	7.0	9.7	9.3	7.8	7.0	6.6	6.2

 Also exclude M₅ < 5 TeV in clockwork model for 0.2 < k < 2.0 TeV

Dilepton channel background prediction

- Selection
 - $p_T > 35$ (53) GeV for electron (muon) candidates
 - Search region: m_{ℓℓ} > 400 GeV
- Barrel-barrel and barrel-endcap combinations considered
- Drell-Yan k-factor calculated with FEWZ 3.1b2 applied to m_{ff} distribution
 - Calculated relative to POWHEG V2
 - Uses PDF4LHC15 PDFs + LUX photon PDFs
- Jets misreconstructed as leptons evaluated from data
- Other backgrounds from MC normalized to SM cross section
 - ttbar at NNLO + NNLL
 - Wt NNLL
 - Other up to NNLO with MCFM 6.6

Results

- No significant discrepancy between data observation and prediction
- In muon channel, data below prediction above $m_{ijj} > 1.6$ TeV (2.9 σ local, 1.8 σ global)
- Dominant uncertainties electron energy scale and PDFs

Barrel-barrel plus barrel-endcap

Limits on contact interactions

$$\mathcal{L}_{q\ell} = \frac{g_{contact}^2}{\Lambda^2} \begin{bmatrix} \eta_{LL}(\overline{q}_L \gamma^\mu q_L)(\overline{\ell}_L \gamma_\mu \ell_L) + \eta_{RR}(\overline{q}_R \gamma^\mu q_R)(\overline{\ell}_R \gamma_\mu \ell_R) \\ + \eta_{LR}(\overline{q}_L \gamma^\mu q_L)(\overline{\ell}_R \gamma_\mu \ell_R) + \eta_{RL}(\overline{q}_R \gamma^\mu q_R)(\overline{\ell}_L \gamma_\mu \ell_L) \end{bmatrix}$$

Limits set assuming only one non-zero η

$$g_{\rm contact}^2/4\pi = 1$$

- Left-Left ($\eta_{LL} = \pm 1$), Left-Right ($\eta_{LR} = \pm 1$), Right-Right ($\eta_{RR} = \pm 1$)
- Destructive and constructive interference

Observed limits < 2σ stronger than expected in dimuon channel

	LL L		R	RR	
+	-	+	-	+	-

Combined ee + µµ limits on contact interactions

- Assuming electron-muon universality, no significant discrepancy between data and pred.
- Observed 95% CL limits from Λ_{LL} > 20 TeV (destr. case) to Λ_{RR} > 32 TeV (const. case)

Combined ee+µµ limits on ADD model

- Combined limits significantly exceed 8 TeV results, comparable to 13 TeV diphoton limits
- Signal model assumes NLO k-factor and truncation of m_{yy} spectrum above Λ_T (M_S)

k-factor of 1.3 applied to signal

Combination of diphoton and dilepton constraints on extra dimensions

- Expected limits improve with $\gamma\gamma + \ell \ell$ combination
- Observed limits sometimes weaker due to stronger than expected γγ limit

Expected limits

Observed limits

Dijet channel

Uses additional background rejection variable

$$\chi_{\text{dijet}} = \exp(|y_1 - y_2|)$$

- Exploits fact that new physics is likely to be more central than QCD background
- Bin with M_{ii} > 6.0 TeV most sensitive
 - Six lower mass bins starting at 2.4 TeV
 - Lower-mass bins also help to constrain systematic uncertainties
- Predictions based on NLOJET++ 4.13
- Jet energy scale (μ_F and μ_R scales) are the dominant experimental (theoretical) uncertainties

Data unfolded to particle level

Dijet analysis limits on dark matter simplified models

$$L_{\mathrm{vector}} = -\mathrm{g}_{\mathrm{DM}} \mathrm{Z'}_{\mu} \bar{\chi} \gamma^{\mu} \chi - \mathrm{g}_{\mathrm{q}} \sum_{\mathrm{q=u,d,s,c,b,t}} \mathrm{Z'}_{\mu} \bar{\mathrm{q}} \gamma^{\mu} \mathrm{q},$$

$$\label{eq:Laxial-vector} \textit{L}_{axial-vector} = -g_{DM} Z'_{~\mu} \bar{\chi} \gamma^{\mu} \gamma_5 \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{~\mu} \bar{q} \gamma^{\mu} \gamma_5 q \text{,}$$

 M_{med} exclusion range has little dependence on m_{DM} for $2m_{DM}$ << M_{med}

Small differences between exclusion limits for vector and axial-vector mediators

Dijet analysis summary table

Limits derived by comparison of detector-level quantities

	Model	Observed lower limit (TeV)	Expected lower limit (TeV)	
CI	$\Lambda_{ m LL/RR}^+$	12.8	14.6 ± 0.8	
Model $(\eta_{LL}, \eta_{RR}, \eta_{RL})$	$\Lambda_{ m LL/RR}^{22/100}$	17.5	23.5 ± 3.0	
$\Lambda_{\mathrm{LL}}^{\pm}$ (±1, 0, 0)	$\Lambda_{ m VV}^+$	14.6	16.4 ± 0.8	Observed limits
Λ^{\pm}_{RR} $(0,\pm 1,0)$	$\Lambda_{_{ m VV}}^-$	22.4	30.7 ± 3.7	∼2σ lower
Λ_{YV}^{\pm} $(\pm 1, \pm 1, \pm 1)$	$\Lambda_{ m AA}^+$	14.7	16.5 ± 0.8	than expected
$\Lambda_{\mathrm{AA}}^{\pm}$ $(\pm 1, \pm 1, \mp 1)$	$\Lambda_{ m AA}^-$	22.3	30.6 ± 3.8	•
$egin{array}{ccccc} \Lambda_{\mathrm{LL}}^{\pm} & (\pm 1, \ 0, \ 0) \\ \Lambda_{\mathrm{RR}}^{\pm} & (0, \pm 1, \ 0) \\ \Lambda_{\mathrm{VV}}^{\pm} & (\pm 1, \pm 1, \pm 1) \\ \Lambda_{\mathrm{AA}}^{\pm} & (\pm 1, \pm 1, \mp 1) \\ \Lambda_{\mathrm{CV-A}}^{\pm} & (0, \ 0, \pm 1) \\ \end{array}$	$egin{array}{c} \Lambda_{\mathrm{AA}}^{\overset{ullet}{V}} \ \Lambda_{\mathrm{AA}}^{-} \ \Lambda_{\mathrm{AA}}^{+} \ \Lambda_{(\mathrm{V-A})}^{+} \end{array}$	9.2	11.5 ± 1.0	
	$\Lambda_{(\mathrm{V-A})}^{-}$	9.3	11.8 ± 1.1	
AΓ	$DD \Lambda_T (GRW)$	10.1	11.4 ± 0.9	
	$M_{\rm S}$ (HLZ) $n_{\rm ED}=2$	10.7	12.4 ± 1.0	Strongest CMS
	$M_{\rm S}$ (HLZ) $n_{\rm ED}=3$	12.0	13.6 ± 1.1	•
	$M_{\rm S}$ (HLZ) $n_{\rm ED}=4$	10.1	11.4 ± 0.9	limits on the
	$M_{\rm S}$ (HLZ) $n_{\rm ED}=5$	9.1	10.3 ± 0.8	ADD scenario
	$M_{\rm S}$ (HLZ) $n_{\rm ED}=6$	8.5	9.6 ± 0.8	
Quantum black holes QB	$M_{QBH} (ADD n_{ED} = 6)$	8.2	8.5 ± 0.4	
	M_{QBH} (RS $n_{\text{ED}} = 1$)	5.9	6.3 ± 0.7	
DN	M Vector/Axial-vector M_{Med}	2.0 - 4.6	2.0 - 5.5	

Summary

- New physics explored in diphoton, dilepton and dijet final states
- Limits set on a variety of models
 - Contact interactions
 - ADD model of extra dimensions
 - Clockwork model
 - Quantum black holes
 - Dark matter
- No significant deviations from SM
 - But full Run II dataset is 3.8 times that shown here!

Backup

References

- EXO-17-017, arXiv:1809.00327, Phys. Rev. D 98 (2018) 092001
- EXO-17-025, arXiv:1812.10443, JHEP 04 (2019) 114
- EXO-16-046, arXiv:1803.08030, Eur. Phys. J. C 78 (2018) 789

Diphoton analysis event display

■ Highest invariant mass diphoton mass recorded in 2016 in EB-EB category

Pre-fit results

Consistent with SM prediction

Diphoton analysis scale uncertainties

Dominant pre-fit uncertainty

Diphoton channel: first limits on clockwork model

Signal term from ADD model rescaled by

$$\theta(m_{\gamma\gamma} - k) \frac{30M_{\rm S}^8}{283\pi M_{\rm 5}^3} \sqrt{1 - \frac{k^2}{m_{\gamma\gamma}^2}} \frac{1}{m_{\gamma\gamma}^5} \left[1 + \frac{(5^2)(7)(17)}{(283)(2^8)} \left(1 - \frac{k}{m_{\gamma\gamma}} \right)^9 \sqrt{\frac{m_{\gamma\gamma}}{k}} \right]^{-1}$$

Limits on ADD model: muon and electron channel combined

Combined limits significantly exceed 8 TeV results, comparable to 13 TeV diphoton limits

Dilepton analysis systematic uncertainties

	Elec	trons	Muons		
Uncertainty	$m_{\rm ee} > 2 {\rm TeV}$	$m_{\rm ee} > 4{\rm TeV}$	$m_{\mu\mu} > 2 \mathrm{TeV}$	$m_{\mu\mu} > 4\mathrm{TeV}$	
Electron trigger + selection efficiency BB (BE)	6 (8	8)%			
Electron energy scale BB (BE)	12.0 (6.7)%	21.7 (11.0)%			
Muon trigger efficiency BB (BE)	_		0.3 (0.7)%	
Muon ID efficiency BB (BE)	_		0.8 (4.6)%	1.7 (7.6)%	
Muon $p_{\rm T}$ resolution BB (BE)			0.8 (1.4)%	1.5 (2.3)%	
Muon $p_{\rm T}$ scale BB (BE)			0.8 (2.8)%	4.1 (12.1)%	
tt/diboson cross section	7	%	7	⁷⁰ / ₀	
Z boson peak normalization	1	%	5	5%	
PDF	5.7%	17.1%	5.7%	17.1%	
Multijet BB (BE)	0.1 (1.3)%	0.1 (0.1)%	<0.1 (4.8)%	<0.1 (<0.1)%	
Pileup reweighting BB (BE)	0.5 (0.7)%	0.4 (0.7)%	0.2 (0.1)%	0.2 (0.2)%	
MC statistics BB (BE)	1.0 (1.8)%	0.7 (1.7)%	1.1 (1.3)%	1.0 (2.0)%	

24

Dilepton analysis limits

	GRW	Hewett			H	LZ		
Order	$\Lambda_{T}[\text{TeV}]$	$M_{\rm S}[{ m TeV}]$			$M_{ m S}[$	TeV]		
		$\lambda = +1$	n=2	n = 3	n = 4	n = 5	n=6	n = 7
			ee for	$m_{\rm ee} > 1.8$	TeV			
LO	6.1 (6.4)	5.5 (5.7)	7.0 (7.5)	7.3 (7.6)	6.1 (6.4)	5.5 (5.8)	5.1 (5.4)	4.9 (5.1)
$LO \times 1.3$	6.3 (6.5)	5.7 (5.8)	7.3 (7.7)	7.5 (7.8)	6.3 (6.5)	5.7 (5.9)	5.3 (5.5)	5.0 (5.2)
			μμ for	$m_{\mu\mu} > 1.8$	3 TeV			
LO	6.7 (6.5)	6.0(5.8)	7.9 (7.6)	7.9 (7.7)	6.7 (6.5)	6.0 (5.9)	5.6 (5.5)	5.3 (5.2)
$LO \times 1.3$	6.8 (6.6)	6.1 (5.9)	8.1 (7.8)	8.1 (7.9)	6.8 (6.6)	6.2 (6.0)	5.7 (5.6)	5.4 (5.3)
		Com	bined ee a	nd µµ for	$m_{\ell\ell} > 1.8$ T	ГeV		
LO	6.7 (6.8)	6.0 (6.0)	7.9 (8.0)	8.0 (8.0)	6.7 (6.8)	6.1 (6.1)	5.7 (5.7)	5.4 (5.4)
$LO \times 1.3$	6.9 (6.9)	6.1 (6.2)	8.2 (8.2)	8.2 (8.2)	6.9 (6.9)	6.2 (6.2)	5.8 (5.8)	5.5 (5.5)
	Comb	ined ee, μμ	, and $\gamma\gamma$ for	or $m_{\ell\ell} > 1$.8 TeV and	$m_{\gamma\gamma} > 500$) GeV	
LO	7.7 (7.5)	6.9 (6.7)	9.3 (8.9)	9.1 (8.9)	7.7 (7.5)	6.9 (6.8)	6.5 (6.3)	6.1 (6.0)

Dijet analysis—detailed selection

- *χ*_{dijet} < 16
- $y_{\text{boost}} = |y_1 + y_2|/2 < 1.11$
- M_{ii} > 2.4 TeV
- These selections result in:
 - $|y_1| < 2.5$
 - $|y_2| < 2.5$
 - Jet p_T > 200 GeV
 - Trigger efficiency > 99%

Dijet analysis—event yields

M _{jj} selection [TeV]	Yield
2.4—3.0	353025
3.0—3.6	71832
3.6—4.2	16712
4.2—4.8	4287
4.8—5.4	1153
5.4—6.0	330
> 6.0	95

Dijet analysis—high mass bins

Dijet analysis—low mass bins

Dijet analysis uncertainties

Source of uncertainty	$2.4 < M_{\rm jj} < 3.0{\rm TeV}$	$M_{\rm jj} > 6.0{\rm TeV}$
Statistical	0.7	27
JES	3.6	9.2
Jet $p_{\rm T}$ resolution (core)	1.0	1.0
Jet $p_{\rm T}$ resolution (tails)	1.0	1.5
Detector response model	0.5	1.0
Unfolding, model dependence	0.2	1.5
Total experimental	4.1	29
QCD NLO scale (6 changes in μ_r and μ_f)	$+8.5 \\ -3.0$	$^{+19}_{-5.8}$
PDF (CT14 eigenvectors)	0.2	0.6
Total theoretical	8.5	19

Contact interactions

Motivated by models of quark and lepton compositeness

In notation of EXO-17-025:
$$\mathcal{L}_{q\ell} = \frac{g_{contact}^2}{\Lambda^2} \begin{bmatrix} \eta_{LL}(\overline{q}_L\gamma^\mu q_L)(\overline{\ell}_L\gamma_\mu\ell_L) + \eta_{RR}(\overline{q}_R\gamma^\mu q_R)(\overline{\ell}_R\gamma_\mu\ell_R) \\ + \eta_{LR}(\overline{q}_L\gamma^\mu q_L)(\overline{\ell}_R\gamma_\mu\ell_R) + \eta_{RL}(\overline{q}_R\gamma^\mu q_R)(\overline{\ell}_L\gamma_\mu\ell_L) \end{bmatrix}$$

$$g_{contact}^2/4\pi = 1$$

In notation of EXO-16-046:
$$\mathcal{L}_{qq} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL}(\overline{q}_L \gamma^\mu q_L) (\overline{q}_L \gamma_\mu q_L) + \eta_{RR}(\overline{q}_R \gamma^\mu q_R) (\overline{q}_R \gamma_\mu q_R) + 2\eta_{RL}(\overline{q}_R \gamma^\mu q_R) (\overline{q}_L \gamma_\mu q_L) \right]$$

May interfere constructively or destructively with SM contribution

$$rac{\mathrm{d}\sigma_{\mathrm{X}
ightarrow\ell\ell}}{\mathrm{d}m_{\ell\ell}} = rac{\mathrm{d}\sigma_{\mathrm{DY}}}{\mathrm{d}m_{\ell\ell}} + \eta_{\mathrm{X}}\mathcal{I}(m_{\ell\ell}) + \eta_{\mathrm{X}}^2\mathcal{S}(m_{\ell\ell})$$

$$\eta_{
m X} = -rac{\eta_{
m ij}}{\Lambda_{
m ij}^2}$$

Large extra dimensions: ADD model

- Potential resolution to hierarchy problem
- Spacetime extended with n additional compactified spatial dimensions of size L
- Gravity can propagate in all dimensions
- All SM particles confined to four-dimensional subspace. Fundamental and 4-D Planck scale related by

$$M_{\rm D}^{2+n} = M_{\rm Pl}^2 / L^n$$

lacktriangledown ADD model can be parameterized by convention-depenent higher dimension operator with coefficient $oldsymbol{\mathcal{F}}$

$$\mathcal{F} = \begin{cases} 1 & (\text{GRW}), \\ \log\left(\frac{M_{\text{S}}^2}{\hat{s}}\right), \text{ if } n_{\text{ED}} = 2 \\ \frac{2}{n_{\text{ED}}-2}, \text{ if } n_{\text{ED}} > 2 \\ \pm \frac{2}{\pi} & (\text{Hewett}), \end{cases} \quad (\text{HLZ}), \qquad \qquad \eta_{\text{G}} = \mathcal{F}/M_{\text{S}}^4$$