Searches for New Heavy Resonances in Final States with Leptons, Photons and Jets

Norbert Neumeister PURDUE

On behalf of the CMS Collaboration

Pheno 2019 - Phenomenology 2019 Symposium, May 6-8, 2019, Pittsburgh, PA

Outline

Introduction

• Di-Jets

- Search for di-jet resonances <u>CMS-PAS-EXO-17-026</u>
- $Z' \rightarrow t\bar{t}$ search <u>CMS-B2G-17-017</u>

• Di-Leptons

- − Z' → $\ell^+\ell^-$ search <u>CMS-EXO-16-047</u> JHEP 06 (2018) 120, <u>CMS-PAS-EXO-18-006</u>
- Z' $\rightarrow \tau^+ \tau^-$ search <u>CMS-EXO-16-008</u> JHEP 02 (2017) 048
- X \rightarrow µe search <u>CMS-EXO-16-058</u> JHEP 04 (2018) 073
- − W' → ℓ v search <u>CMS-EXO-16-033</u> JHEP 06 (2018) 128
- W' $\rightarrow \tau v$ search <u>CMS-EXO-17-008</u> Phys. Lett. B 792 (2019) 107

• Di-Photons

- High mass photon pairs EXO-17-017 Phys. Rev. D 98 (2018) 092001

Excited Leptons

- Search for excited leptons in $\ell\ell\gamma$ final states EXO-18-004 JHEP 04 (2019) 015

Introduction

- There are strong motivations for physics beyond the standard model
 - Not clear at what energy scale new particles/phenomena will appear
- High energy and large integrated luminosity give sensitivity for searches in unexplored phase space
 - High energy: Particularly important for searches for high mass resonances
 - Large statistics: About 150 fb⁻¹ from Run 2
- A multitude of searches target anomalous production of resonant dileptons, di-jets and di-photons motivated by a wide range of theoretical models
 - Distinct signature with low SM backgrounds
 - Simple signatures allow for largely model-independent searches
 - Due to the large Lorentz boost decay products may be merged into a single object (jet)

Extended Gauge Symmetries

- New gauge bosons predicted by many extensions of the Standard Model with extended gauge symmetries
 - Sequential Standard Model Z_{SSM} with same coupling as in the SM
 - Z'_{Ψ} , Z'_{χ} , Z'_{η} models from E6 and SO(10) GUT groups
 - Left-Right symmetry model (LRM) and Alternative LRM (ALRM)
 - The Kaluza-Klein model (KK) from Extra Dimensions
- No precise prediction for mass scale of gauge bosons
- Differentiating between different models requires measurement of
 - Cross section, mass, width, angular distributions

Resonance Searches

- Search for new resonances in the tails of the SM distributions
- Backgrounds
 - relatively clean with good S/B
 - most SM backgrounds can be modeled from data
- Experimental challenges
 - understanding detector resolution is key
 - I.3% 2.4% for electrons and 7% for muons at I TeV
- Resonance searches can also be interpreted in terms of Dark Matter models

Di-jet Resonances

CMS-PAS-EXO-17-026

- $\Delta R < 1.1$: reduce sensitivity to gluon radiation from the final-state partons
- Search for bumps in di-jet mass spectrum
 - compare binned m_{jj} data to the fitted background estimate
- Fit smoothly falling di-jet background (full mass range) with:

$$\frac{d\sigma}{dm_{jj}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln(x)}} \text{ with } x = m_{jj}/\sqrt{s}$$

- Data-driven method via a $|\Delta\eta|$ sideband
 - Create SR and CR in $|\Delta \eta|$ of two wide-PF jets
 - Background in SR is estimated from CR
 - from MC: R=N(CR,mjj)/N(SR,mjj)

Di-jet Resonances

- Global significance is computed with pseudo experiments
- Upper limits on nine benchmark models
- No significant excess observed
- Finals states with gluons have more FSR and wider resonances → Limit depends on final state
 - Different signal shapes for qq, qg, gg final states

		Observed (expected) mass limit [TeV]	
Model	Final	$36\mathrm{fb}^{-1}$	$77.8{\rm fb}^{-1}$
	State	13 TeV	13 TeV
String	qg	7.7 (7.7)	7.6 (7.9)
Scalar diquark	qq	7.2 (7.4)	7.3 (7.5)
Axigluon/coloron	$q\overline{q}$	6.1 (6.0)	6.2 (6.3)
Excited quark	qg	6.0 (5.8)	6.0 (6.0)
Color-octet scalar ($k_s^2 = 1/2$)	gg	3.4 (3.6)	3.7 (3.8)
W′	$q\overline{q}$	3.3 (3.6)	3.6 (3.8)
Ζ′	$q\overline{q}$	2.7 (2.9)	2.9 (3.1)
RS graviton ($k/M_{\rm PL} = 0.1$)	q q , gg	1.8 (2.3)	2.4 (2.4)
DM mediator ($m_{\rm DM} = 1 {\rm GeV}$)	$q\overline{q}$	2.6 (2.5)	2.5 (2.8)

CMS-PAS-EXO-17-026

Di-jet Resonances CMS-PAS-EXO-17-026

Event display of the event with the highest di-jet invariant mass at 8 TeV

- Search for a heavy spin-I resonance decaying to a top quark and antiquark pair
 - no interference with SM tt production assumed
 - tt̄ modes: fully-leptonic, semi-leptonic, hadronic (leptons=e, μ)
- Optimized for top-quarks with high Lorentz boost
 - requires non-isolated leptons and jet substructure techniques
- Limits on leptophobic topcolor Z' with widths of 1, 10, and 30%, relative to the mass of the resonance: 3.80, 5.25, and 6.65 TeV, respectively.
- Kaluza-Klein excitations of the gluon in the RS model are excluded up to 4.55 TeV.

 $Z' \rightarrow \ell^+ \ell^-$

- Search for narrow resonances in m_{ℓℓ} (ℓ = e,µ) distributions above SM background using 36 fb⁻¹ (2016) of data
- Dominant background: Drell-Yan
 - Estimated from mass-dependent POWHEG, corrected with NNLO(NLO) QCD(EWK) k-factors
- The amount of jet background is estimated from data

Norbert Neumeister - Purdue University

$Z' \rightarrow \ell^+ \ell^-$

- Exclusion limits are set on the ratio $\sigma(Z')/\sigma(Z)$ using an unbinned maximum likelihood fit to the data
- Limits set on Z'/Z cross section ratio using Bayesian calculations
- Spin-I: $m(Z'_{\Psi}) > 3.9 \text{ TeV}, m(Z'_{SSM}) > 4.5 \text{ TeV}$
- Spin-2: k/MPI = 0.01: m > 2.10 TeV
 k/MPI = 0.05: m > 3.65 TeV
 k/MPI = 0.1: m > 4.25 TeV

Norbert Neumeister - Purdue University

$Z' \rightarrow \ell^+ \ell^-$

- In a simplified model of dark matter production via a vector or axial vector mediator, limits at 95% confidence level are obtained on the masses of the dark matter particle and its mediator.
- The width of the mediator is taken into account in the limit calculation.

Z'→e+e-

CMS-PAS-EXO-18-006

- A search for high mass resonances in the dielectron final state is performed using 41.4 fb⁻¹ of data collected in 2017.
- The analysis selects two well reconstructed and isolated electrons, with $E_T > 35$ GeV
- Electrons are selected in the barrel region using $|\eta| < 1.44$ or in the endcap region $1.56 < |\eta| < 2.5$
- The dielectron pair is formed with the highest p_T electrons.
- Main background: Drell-Yan

41.4 fb⁻¹ (13 TeV)

Z'→e+e-

- The statistical analysis from the electron channel (41 fb⁻¹) and muon channel (36 fb⁻¹) are combined in order to place stronger limits on the lower bounds of the Z' mass
- Lower mass limits:
 - For the Z'_{SSM} m > 4.7 TeV
 - For the Z'_{Ψ} m > 4.1 TeV

 $Z' \rightarrow \tau \tau$

- Search for a Z' also performed in decay to $\tau\tau$
- Especially motivated by models preferring Z' couplings to the third generation
- Consider both hadronic and leptonic τ decays

 Combining all four final states the exclusion limit for a SSM Z' is 2.1 TeV.

Norbert Neumeister - Purdue University

Pheno 2019

X→µe

- Model independent search
- p_T(e)>35 GeV, p_T(μ)>53 GeV, p_T^{miss}>50 GeV
- Heavy Z' gauge bosons with lepton-flavor violating transitions are excluded for masses up to 4.4 TeV
- m(X) > 1.7 TeV for RPV couplings $\lambda_{132} = \lambda_{231} = \lambda'_{311} = 0.01$

 \overline{q}_{u}

 q_{11}

Pheno 2019

 μ^+

W'→µ/e+v

Look for heavy W-like Jacobian peak in transverse mass

 $M_{\rm T} = \sqrt{2p_{\rm T}^l E_{\rm T}^{\rm miss} (1 - \cos[\Delta \phi(\vec{p}_{\rm T}^l, \vec{p}_{\rm T}^{\rm miss})])}$

 Dominant background: W production in standard model

Take into account interference with SM

Norbert Neumeister - Purdue University

W'→µ/e+v

- No significant excess → set exclusion limits
- Limits sets on SSM benchmark model with 8% BR into each lepton, no decays into W, H, Z bosons
- Combining both channels:
 - limits on sequential W' reach 5.2 TeV
 - model independent limits as function of minimum M_T for $X \rightarrow \ell_V$

Norbert Neumeister - Purdue University

 $W' \rightarrow \tau V$

 ν

had

- Motivated by models preferring W' couplings to the third generation
- Limits sets on SSM benchmark model W'
 - $0.4 < M_{W} < 4.0$ TeV at 95% confidence level
 - In addition, a model-independent limit is provided allowing other interpretations in models with the same final state and similar kinematics

• For $M_{W'} > 180$ GeV, $W' \rightarrow tb$ opens, affects BR($W' \rightarrow \tau v$)=8.5% in SSM

W'→tb searches: Phys. Lett. B 788 (2019) 347 , Phys. Lett. B 777 (2017) 39

Norbert Neumeister - Purdue University

Pheno 2019

Di-Photon Search CMS-EXO-17-017

- Search for resonant production of photon pairs using 35.9 fb⁻¹ (2016).
- A very clean state without additional activity in the direction of the two photons.
- Three values of the relative width Γ_x/m_x are used as benchmarks: 1.4×10^{-4} , 1.4×10^{-2} , and 5.6×10^{-2} ; with $0.5 < m_x < 4.5$ TeV.
- Photons are required to have pT > 75 GeV
- Events are categorized depending on the location of the two photons.
- A fit is performed to the invariant mass spectra to determine the compatibility of the data with the background-only and the signal+background hypotheses.

Di-Photon Search CMS-EXO-17-017

- Compatibility of the observation with the background-only hypothesis is evaluated by computing the background-only p-value.
- Lower limits on the mass of the RS graviton are set as:
 - m(RSG) > 2.3 TeV
 - for \tilde{k} =0.01 $\Gamma_X/m_X = 1.4 \times 10^{-4}$
 - m(RSG) > 4.1 TeV \tilde{k} =0.1 for \tilde{k} =0.1 Γ_{X}/m_{X} = 1.4 × 10⁻²
 - m(RSG) > 4.6 TeV \tilde{k} =0.2 for \tilde{k} =0.2 Γ_{χ}/m_{χ} = 5.6 × 10⁻²
- Also, model independent limits on cross sections in the fiducial volume (pT^Y>75 GeV) for resonant pp → YY processes.

Norbert Neumeister - Purdue University

Excited Leptons

e*/#*

 e/μ

 e/μ

- Compositeness models predict excited leptons: ^q e^{*}(μ^{*})→eγ (μγ)
- Production through Contact Interactions (CI), decay via SM gauge interactions
- Final state: same-flavor lepton pair; low background but ambiguity in

Norbert Neumeister - Purdue University

Summary

- Extensive search program for heavy resonances at CMS
 - So far no significant hint for the existence of new physics.
 - Data at $\sqrt{s} = 13$ TeV offers sensitivity to new resonances in the multi-TeV range.
 - Further progress will be slower as more and more data comes in, but the centre-of-mass energy stays the same.
 - Still a lot of information to be gained from last year's dataset and more results to come in the next months.
- Searches for BSM physics will continue to explore uncharted territories
 - Stay tuned!