

Searches for long-lived particles and other non-conventional signatures at CMS

Michael Krohn

On behalf of the CMS Collaboration

Phenomenology 2019

May 7, 2019

Motivation for Long-Lived Particles

- Numerous BSM theories predict LLPs
 - SUSY, hidden valley scenarios, dark QCD, etc.
- CMS designed to identify prompt particles

Triggering, data acquisition, reconstruction, and analysis

techniques

Primary backgrounds are usually ignored in prompt particle searches

Cosmic rays

- Electronic noise
- Material interactions
- Satellite bunches
- Beam halo

Heather Russel's LLP Workshop talk

Emerging Jets

- Dark QCD model
 - Signature: 2 SM jets and 2 emerging jets
- Identifying emerging jets
 - Median of transverse IPs of associated tracks

• Fraction of jet p_T associated with prompt tracks

Emerging Jets

- Data driven background estimation from 4-jet sample without emerging jets
 - Misidentification probability of SM jets as emerging jets

Mediator masses
excluded between
400 and 1250 GeV for
decay lengths
between 5 and 225
mm

Displaced Jets

- Jets originating from vertices displaced up to 55 cm from the primary vertex
 - $pp \rightarrow XX$, $X \rightarrow qq$ (X = neutral scalar)
 - GMSB model with long-lived gluino $(\tilde{g} \to g\tilde{G})$
- Dedicated displaced jet trigger
 - $H_T > 350 \text{ GeV}$

• \geq 2 jets with $p_T > 40$ GeV, $|\eta| < 2, \leq$ 2 prompt tracks, \geq 1

displaced track

- Background
 - Likelihood discriminant built from track, vertex, and jet information
 - Data driven estimate using control regions defined by the number of prompt tracks associated with either jet and the decay length of SV

Displaced Jets

- Pair production cross sections larger than 0.2 fb excluded for $m_X > 1000$ GeV and decay lengths between 3 and 130 mm
- Gluino masses up to 2400 GeV are excluded in gluino pair production cross sections larger than 0.25 fb for decay lengths between 10 and 210 mm

- GMSB model
- Identifying delayed jets
 - ECAL timing capabilities
 - PbWO₄ crystals with Si APDs
 - Time resolution ~200 ps
 - Calorimeter clustering only for jet reconstruction

- Backgrounds estimated from data control regions
 - ECAL time resolution tails
 - ECAL electronic noise
 - Direct APD hits
 - Pileup, in-time and out-oftime
 - Satellite bunches
 - Beam halo
 - Cosmic muons

- Jet cleaning requirements
 - # ECAL hits > 25
 - RMS of t_{iet}
 - Fraction of jet momentum from PV tracks
 - Fraction of ECAL energy that can be associated with CSC segment hits

Background	Prediction
Beam halo	$0.02^{+0.06}_{-0.02}(\mathrm{stat}){}^{+0.05}_{-0.01}(\mathrm{syst})$
Core and satellite bunches	$0.11^{+0.09}_{-0.05}(\mathrm{stat}){}^{+0.02}_{-0.02}(\mathrm{syst})$
Cosmics	$1.0^{+1.8}_{-1.0}(\mathrm{stat}){}^{+1.8}_{-1.0}(\mathrm{syst})$

 Gluino masses below 2100 GeV are excluded for proper decay lengths between 0.3 and 30 m

Conclusion

- Searches for long-lived particles and unconventional signatures are underway
- More full Run 2 analyses will be published soon
- Triggers, data acquisition, reconstruction techniques and analysis strategies are being developed for unconventional signatures
- HL-LHC upgrades will assist in allowing more unconventional signatures to be looked for

Backup

5/7/2019 11

Emerging Jets

Emerging Jets

Beam halo muon

5/7/2019 14

Beam halo muon

16

Disappearing Track

 p_T

- Anomaly-mediated supersymmetry breaking models
 - $\chi_1^{\pm}(NLSP)$ is nearly mass-degenerate with χ_0 (LSP)
 - Produces a track that disappears after crossing a few tracker layers
- Select signal events using ISR jet
 - Reduce QCD background using angle cuts between jets and missing

Disappearing Track

- Reconstructing small tracks
 - Require 3 hits in pixel detector and 7 hits overall in tracker
 - No missing inner hits
 - No hits in the outer layers
 - Strict impact parameter requirement
- Backgrounds estimated using data control regions
 - Spurious tracks from random hits
 - Charged leptons that fail lepton ID

Disappearing Track

- Limits set for lifetimes between 0.1 and 100 ns
 - χ_1^{\pm} with masses up to 715 (695) GeV are excluded for a lifetime of 3 (7) ns

Heavy Stable Charged Particles

- HSCPs have large ionization energies, $\frac{dE}{dx}$, and long time of flights (TOF)
 - Two analysis techniques used
 - Tracker-only
 - Tracker + TOF
- Benchmark models
 - Split SUSY scenarios with R-hadrons that are stable
 - Stuas from mGMSB
 - Modified Drell-Yan production with long lived lepton-like fermions

Heavy Stable Charged Particles

- Background estimation
 - ullet Tracker-only: ABCD method based on p_T and $rac{dE}{dx}$
 - Tracker+TOF: Extended ABCD method based on p_T , $\frac{dE}{dx}$, and $\frac{1}{\beta}$

Heavy Stable Charged Particles

- Split SUSY gluino masses below 1850 GeV excluded
- Stau masses below 660 GeV excluded for GMSB
- DY signals with |Q| = 1e(2e) excluded below 730 (890) GeV

CMS LLP Summary of Results

CMS long-lived particle searches, lifetime exclusions at 95% CL

