Di-Higgs Production in SUSY Models

Yu Hang Ng

Department of Physics and Astronomy Univeristy of Nebraska-Lincoln

Phenomenology 2019 Symposium May 7, 2019

Di-Higgs production through gluon fusion at 14TeV collider energy in the framework of Minimal Supersymmetric Standard Model(MSSM) and Next-to-Minimal Supersymmetric Standard Model(NMSSM).

 \blacktriangleright Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes

- \blacktriangleright Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes
	- \blacktriangleright allow us to study the interference between resonant and nonresonant amplitudes

- \blacktriangleright Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes
	- \blacktriangleright allow us to study the interference between resonant and nonresonant amplitudes
- \blacktriangleright Includes both quark and squark loop contributions

- \blacktriangleright Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes
	- \blacktriangleright allow us to study the interference between resonant and nonresonant amplitudes
- \blacktriangleright Includes both quark and squark loop contributions
- \triangleright Separate the cross section into resonant, nonresonant, and interference parts

- \blacktriangleright Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes
	- \blacktriangleright allow us to study the interference between resonant and nonresonant amplitudes
- \blacktriangleright Includes both quark and squark loop contributions
- ▶ Separate the cross section into resonant, nonresonant, and interference parts
	- To better understand how SUSY Higgs pair production cross section is enhanced as compared to SM case

Leading order Feynman diagrams for Higgs pair production in MSSM:

Resonant amplitude:

Nonresonant amplitude:

- \blacktriangleright Require mass of light CP-even Higgs boson to be 125 ± 0.5 GeV
	- **►** Stop mixing parameter X_t can be determined by m_A and tan β $(\mu, M_1, M_2, M_3, m_{\tilde{t}_1}, m_{\tilde{t}_2} \text{ are fixed})$

- \blacktriangleright Require mass of light CP-even Higgs boson to be 125 ± 0.5 GeV
	- \triangleright Stop mixing parameter *X_t* can be determined by m_A and tan β $(\mu, M_1, M_2, M_3, m_{\tilde{t}_1}, m_{\tilde{t}_2} \text{ are fixed})$

 m_A and tan β are restricted by:

► Search for additional neutral MSSM Higgs Bosons in the di-tau Search for additional neutral MSSM Highland state in pp collision at $\sqrt{s} = 13 \text{ TeV}$

 \triangleright Precision measurement of Higgs Couplings

- \blacktriangleright Require mass of light CP-even Higgs boson to be 125 ± 0.5 GeV
	- \triangleright Stop mixing parameter *X_t* can be determined by m_A and tan β $(\mu, M_1, M_2, M_3, m_{\tilde{t}_1}, m_{\tilde{t}_2} \text{ are fixed})$

 m_A and tan β are restricted by:

- ► Search for additional neutral MSSM Higgs Bosons in the di-tau Search for additional neutral MSSM Highland state in pp collision at $\sqrt{s} = 13 \text{ TeV}$
	- \triangleright ref: CMS PAS HIG-17-020
	- ► Upper bound of tan β
- \triangleright Precision measurement of Higgs Couplings

- \blacktriangleright Require mass of light CP-even Higgs boson to be 125 ± 0.5 GeV
	- \triangleright Stop mixing parameter X_t can be determined by m_A and tan β $(\mu, M_1, M_2, M_3, m_{\tilde{t}_1}, m_{\tilde{t}_2} \text{ are fixed})$

 m_A and tan β are restricted by:

- ► Search for additional neutral MSSM Higgs Bosons in the di-tau Search for additional neutral MSSM Highland state in pp collision at $\sqrt{s} = 13 \text{ TeV}$
	- \triangleright ref: CMS PAS HIG-17-020
	- ► Upper bound of tan β
- \triangleright Precision measurement of Higgs Couplings
	- \triangleright ref: CMS PAS HIG-17-031
	- **I** checked coupling modifiers: κ_t , κ_b , κ_{τ} , κ_{γ} , κ_g
	- \blacktriangleright Lower bound of m_A

RESULTS

$$
\triangleright \frac{\sigma_{MSSM}^{LO} / \sigma_{SM}^{LO}}{(\sigma_{SM}^{LO}=21.7 \text{ fb})}
$$

 \blacktriangleright Always larger than SM cross section (10% \sim 40% enhancement)

RESULTS

- \blacktriangleright $\sigma_{res}/\sigma_{SM}^{LO}$
- \blacktriangleright σ_{res} is largest when tan β and m_A are small
- \blacktriangleright σ_{nr} dominates when tan β and *m^A* are large

 \blacktriangleright When tan β and m_A are small, σ*^Iint* can be as large as σ*res*

RESULTS

$$
\blacktriangleright \delta_3 = \frac{g_{hhh}^{MSSM} - g_{hhh}^{SM}}{g_{hhh}^{SM}}
$$

 \blacktriangleright Always smaller than SM value

$$
(-12\% \sim -15\%)
$$

- \blacktriangleright $\kappa_t \approx 1$
- \triangleright δ_3 is the main factor that increases σ_{nr} by about $8\% \sim 10\%$

Leading order Feynman diagrams for Higgs pair production in NMSSM:

PARAMETER SPACE SCAN RANGES

 \circ

 000

ō

 \circ

- \blacktriangleright Scanned by NMSSMTools 5.4.0
- Choose $\lambda, \kappa < 0.7$ to ensure perturbativity
- \triangleright Various phenomenological and theoretical constraints are checked by NMSSMTools

BENCHMARKS FOR HIGGS PAIR PRODUCTION IN NMSSM

 $\sigma_{SM}^{LO} = 21.7$ fb σ_{SM}^{NLO} = 42.3 fb

\triangleright MSSM:

- \blacktriangleright *σ_{nr}* is about 8% ∼ 10% larger than σ_{SM}^{LO}
- \triangleright σ_{res} is largest when tan β and m_A are small

\blacktriangleright MSSM:

- \blacktriangleright *σ_{nr}* is about 8% ∼ 10% larger than σ_{SM}^{LO}
- \triangleright σ_{res} is largest when tan β and m_A are small
- \triangleright σ_{MSSM} is largest when tan β and m_A are small

\blacktriangleright MSSM:

- \blacktriangleright *σ_{nr}* is about 8% ∼ 10% larger than σ_{SM}^{LO}
- \triangleright σ_{res} is largest when tan β and m_A are small
- \triangleright σ_{MSSM} is largest when tan β and m_A are small

\blacktriangleright MSSM:

- \blacktriangleright *σ_{nr}* is about 8% ∼ 10% larger than σ_{SM}^{LO}
- \triangleright σ_{res} is largest when tan β and m_A are small
- \triangleright σ_{MSSM} is largest when tan β and m_A are small

\blacktriangleright NMSSM:

 \blacktriangleright σ_{NMSSM} can be larger than σ_{SM} by 70%

\blacktriangleright MSSM:

- \blacktriangleright *σ_{nr}* is about 8% ∼ 10% larger than σ_{SM}^{LO}
- \triangleright σ_{res} is largest when tan β and m_A are small
- \triangleright σ_{MSSM} is largest when tan β and m_A are small

\blacktriangleright NMSSM:

- \blacktriangleright σ_{NMSSM} can be larger than σ_{SM} by 70%
- \blacktriangleright σ_{res} is large when $m_{H_2} \approx m_{H_2}$

INTERFERENCE TERM

$$
|\mathcal{M}|^2 \propto |A_{\triangleright}^H + A_{\triangleright}^{nr} + A_{\square}^{nr}|^2
$$

= $|A_{\triangleright}^H|^2 + |A_{\triangleright}^{nr} + A_{\square}^{nr}|^2 + 2Re[A_{\triangleright}^H \times (A_{\triangleright}^{nr} + A_{\square}^{nr})^*]$

The interference term is $2Re[A^H_\triangleright \times (A^{nr}_\triangleright + A^{nr}_\square)^*] = 2Re[A^H_\triangleright \times A^{nr}_\triangleright^*] + 2Re[A^H_\triangleright \times A^{nr}_\square^*].$ Let $A^{nr} = |A^{nr}|e^{i\delta_{nr}}, a_{res} = C_{Hhh}C_{Htt}F_{\triangleright}$, then

$$
A_{\triangleright}^H = a_{res} \frac{\hat{s}}{\hat{s} - m_H^2 + i\Gamma_H m_H}
$$

=
$$
|a_{res}|e^{i\delta_{res}}\hat{s} \frac{\hat{s} - m_H^2 - i\Gamma_H m_H}{(\hat{s} - m_H^2)^2 + (\Gamma_H m_H)^2}
$$

INTERFERENCE TERM

$$
2Re[A_{\triangleright}^H \times A^{nr*}] = 2Re[|a_{res}| |A^{nr}| e^{i(\delta_{res} - \delta_{nr})}\hat{s} \frac{\hat{s} - m_H^2 - i\Gamma_H m_H}{(\hat{s} - m_H^2)^2 + (\Gamma_H m_H)^2}]
$$

$$
= 2(R_{int} + I_{int})
$$

$$
R_{int} = |a_{res}| |A^{nr}| cos(\delta_{res} - \delta_{nr})\hat{s} \frac{\hat{s} - m_H^2}{(\hat{s} - m_H^2)^2 + (\Gamma_H m_H)^2}
$$

$$
I_{int} = |a_{res}| |A^{nr}| sin(\delta_{res} - \delta_{nr})\hat{s} \frac{\Gamma_H m_H}{(\hat{s} - m_H^2)^2 + (\Gamma_H m_H)^2}
$$

INTERFERENCE TERM

Xt/*M^S* CONTOUR PLOT

κ*^t* CONTOUR PLOT

$\sigma^{LO}_{MSSM}(no\; \tilde{t})/\,\sigma^{LO}_{SM}$ contour plot

$\sigma_{nr}/\,\sigma_{SM}^{LO}$ contour plot

NMSSM CONSTRAINTS

PROB(1) chargino too light $PROB(2)$ excluded by $Z \rightarrow$ neutralinos PROB(3) charged Higgs too light $PROB(4)$ excluded by ee -> hZ PROB(5) excluded by ee \rightarrow hZ, h \rightarrow bb PROB(6) excluded by ee \rightarrow hZ, h \rightarrow tautau PROB(7) excluded by ee \rightarrow hZ, h \rightarrow invisible PROB(8) excluded by ee -> hZ , $h \rightarrow 2$ jets PROB(9) excluded by ee \rightarrow hZ, h \rightarrow 2photons PROB(10) excluded by ee $\geq hZ$, h $\geq A$ ≥ 4 bs PROB(11) excluded by ee -> hZ , $h \rightarrow AA \rightarrow 4taus$ PROB(12) excluded by ee -> hZ , $h \rightarrow AA \rightarrow 2bs$ 2taus PROB(13) excluded by $Z \rightarrow hA$ (Z width) PROB(14) excluded by ee \rightarrow hA \rightarrow 4bs PROB(15) excluded by ee \Rightarrow hA \Rightarrow 4taus

PROB(16) excluded by ee \Rightarrow hA \Rightarrow 2bs 2taus PROB(17) excluded by ee \rightarrow hA \rightarrow AAA \rightarrow 6bs PROB(18) excluded by ee \rightarrow hA \rightarrow AAA \rightarrow 6taus PROB(19) excluded by ee -> Zh -> ZAA -> Z + light pairs PROB(20) excluded by stop \rightarrow b l sneutrino $PROB(21)$ excluded by stop \rightarrow neutralino c $PROB(22)$ excluded by sbottom \rightarrow neutralino b PROB(23) squark/gluino too light PROB(24) selectron/smuon too light PROB(25) stau too light PROB(26) lightest neutralino is not LSP or $\lt 511$ keV PROB(27) Landau Pole in l, k, ht, hb below MGUT PROB(28) unphysical global minimum PROB(29) Higgs soft masses » Msusy PROB(30) excluded by DM relic density (checked only if OMGFLAG=/=0) PROB(31) excluded by DM SI WIMP-nucleon xs (checked if $|OMGFLAG| = 2$ or 4) PROB(32) b->s gamma more than 2 sigma away PROB(33) Delta *M^s* more than 2 sigma away PROB(34) Delta M_d more than 2 sigma away PROB(35) B_s ->mu+mu- more than 2 sigma away PROB(36) B+-> tau+ ν_{τ} more than 2 sigma away PROB(37) $(g - 2)_u$ more than 2 sigma away PROB(38) excluded by Upsilon(1S) \rightarrow A gamma PROB(39) excluded by $\eta_b(1S)$ mass measurement PROB(40) BR(B \rightarrow *X_s* mu+ mu-) more than 2 sigma away PROB(41) excluded by ee -> hZ , $h \rightarrow AA \rightarrow 4$ taus (ALEPH analysis) PROB(42) excluded by top \rightarrow b H+, H+ \rightarrow c s (CDF, D0) PROB(43) excluded by top -> b H+, H+ -> $\tau \nu_{\tau}$ (D0) PROB(44) excluded by top -> b H+, H+ -> W+ A1, A1 -> 2taus (CDF) PROB(45) excluded by $t \rightarrow bH+$ (LHC)

PROB(46) No Higgs in the MHmin-MHmax GeV range $PROB(47)$ chi2gam > chi2max $PROB(48)$ chi2bb $>$ chi2max PROB(49) chi $2zz >$ chi $2max$ PROB(51) excluded by H/A->tautau PROB(52) Excluded by H->AA->4leptons/2lept.+2b (LHC) PROB(53) excluded by ggF->H/A->gamgam (65GeV < M < 122GeV, ATLAS) PROB(55) b \rightarrow d gamma more than 2 sigma away PROB(56) $B_d \rightarrow$ mu+ mu- more than 2 sigma away PROB(57) b -> s nu nubar more than 2 sigma away PROB(58) b \rightarrow c tau nu more than 2 sigma away (as SM) PROB(59) K -> pi nu nubar more than 2 sigma away PROB(60) DMK / epsK more than 2 sigma away PROB(61) excluded by DM SD WIMP-neutron xs (checked if $|OMGFLAG| = 2$ or 4) PROB(62) excluded by DM SD WIMP-proton xs (checked if $|OMGFLAG| = 2$ or 4)

ALL INPUT PARAMETERS OF NMSSM BENCHMARKS

