INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0 00 000	0 0 0	0

Di-Higgs Production in SUSY Models

Yu Hang Ng

Department of Physics and Astronomy University of Nebraska-Lincoln

Phenomenology 2019 Symposium May 7, 2019

INTRODUCTION	MSSM	NMSSM	SUMMARY
•	0 00 000	0 0 0	0

Di-Higgs production through gluon fusion at 14TeV collider energy in the framework of Minimal Supersymmetric Standard Model(MSSM) and Next-to-Minimal Supersymmetric Standard Model(NMSSM).

INTRODUCTION	MSSM	NMSSM	SUMMARY
•	0 00 000	0 0 0	0

 Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes

INTRODUCTION	MSSM	NMSSM	SUMMARY
•	0 00 000	0 0 0	0

- Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes
 - allow us to study the interference between resonant and nonresonant amplitudes

INTRODUCTION	MSSM	NMSSM	SUMMARY
•	0 00 000	0 0 0	0

- Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes
 - allow us to study the interference between resonant and nonresonant amplitudes
- Includes both quark and squark loop contributions

INTRODUCTION	MSSM	NMSSM	SUMMARY
•	0 00 000	0 0 0	0

- Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes
 - allow us to study the interference between resonant and nonresonant amplitudes
- Includes both quark and squark loop contributions
- Separate the cross section into resonant, nonresonant, and interference parts

INTRODUCTION	MSSM	NMSSM	SUMMARY
•	0 00 000	0 0 0	0

- Higgs pair production cross section is calculated based on the analytical expression of the leading order Feynman amplitudes
 - allow us to study the interference between resonant and nonresonant amplitudes
- ► Includes both quark and squark loop contributions
- Separate the cross section into resonant, nonresonant, and interference parts
 - To better understand how SUSY Higgs pair production cross section is enhanced as compared to SM case

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	•	0	0
	000	0	

Leading order Feynman diagrams for Higgs pair production in MSSM:

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	• 00 000	0 0 0	0

Resonant amplitude:

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	•	0	0
	000	0	

Nonresonant amplitude:

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0 •0 000	0 0 0	0

- Require mass of light CP-even Higgs boson to be 125 ± 0.5 GeV
 - Stop mixing parameter X_t can be determined by m_A and tanβ (μ, M₁, M₂, M₃, m_{˜t1}, m_{˜t2} are fixed)

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	○ ● ○ ○○○	0 0 0	0

- Require mass of light CP-even Higgs boson to be 125 ± 0.5 GeV
 - Stop mixing parameter X_t can be determined by m_A and tanβ (μ, M₁, M₂, M₃, m_{˜t1}, m_{˜t2} are fixed)

 m_A and $\tan\beta$ are restricted by:

Search for additional neutral MSSM Higgs Bosons in the di-tau final state in pp collision at $\sqrt{s} = 13$ TeV

Precision measurement of Higgs Couplings

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	o ●o	0	0
0	• o 000	0	0

- Require mass of light CP-even Higgs boson to be 125 ± 0.5 GeV
 - Stop mixing parameter X_t can be determined by m_A and tanβ (μ, M₁, M₂, M₃, m_{˜t1}, m_{˜t2} are fixed)

 m_A and $\tan\beta$ are restricted by:

- Search for additional neutral MSSM Higgs Bosons in the di-tau final state in pp collision at $\sqrt{s} = 13$ TeV
 - ▶ ref: CMS PAS HIG-17-020
 - Upper bound of tan β
- Precision measurement of Higgs Couplings

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	o ●o	0	0
0	• o 000	0	0

- Require mass of light CP-even Higgs boson to be 125 ± 0.5 GeV
 - Stop mixing parameter X_t can be determined by m_A and tanβ (μ, M₁, M₂, M₃, m_{˜t1}, m_{˜t2} are fixed)

 m_A and $\tan\beta$ are restricted by:

Search for additional neutral MSSM Higgs Bosons in the di-tau final state in pp collision at $\sqrt{s} = 13$ TeV

- ► ref: CMS PAS HIG-17-020
- Upper bound of tan β
- Precision measurement of Higgs Couplings
 - ▶ ref: CMS PAS HIG-17-031
 - checked coupling modifiers: $\kappa_t, \kappa_b, \kappa_\tau, \kappa_\gamma, \kappa_g$
 - Lower bound of m_A

MSSM	NMSSM	SUMMAR
0 0 0 0	0 0	0

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	○ ○○ ●○○	0 0 0	0

RESULTS

•
$$\sigma_{MSSM}^{LO} / \sigma_{SM}^{LO}$$

(σ_{SM}^{LO} =21.7 fb)

 Always larger than SM cross section (10% ~ 40% enhancement)

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0	0	0
	000	0	

RESULTS

- $\blacktriangleright \sigma_{\rm res} / \sigma_{\rm SM}^{\rm LO}$
- σ_{res} is largest when $\tan\beta$ and m_A are small
- σ_{nr} dominates when $\tan\beta$ and m_A are large

• When $\tan\beta$ and m_A are small, $\sigma_{I_{int}}$ can be as large as σ_{res}

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0 00 00	0 0 0	0

RESULTS

•
$$\delta_3 = \frac{g_{hhh}^{MSSM} - g_{hhh}^{SM}}{g_{hhh}^{SM}}$$

Always smaller than SM value

$$(-12\% \sim -15\%)$$

- $\kappa_t \approx 1$
- δ₃ is the main factor that increases σ_{nr} by about 8% ~ 10%

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0	•	0
	000	0	

Leading order Feynman diagrams for Higgs pair production in NMSSM:

PARAMETER SPACE SCAN RANGES

MSSM

	$\tan\beta$	λ	κ	A_{λ}	A_{κ}	μ_{eff}	M_1	M_2	M_3	A_t	A_b	$A_{ au}$	m_{Q_3}	m_{L_3}
								(i	n TeV	')				
min	1	0	-0.7	-1	-1	-0.5	0.1	0.2	1.3	-6	-6	-3	0.6	0.6
max	10	0.7	0.7	1	1	0.5	1	2	7	6	6	3	4	4

NMSSM

ē

► Scanned by NMSSMTools5.4.0

- Choose λ , $\kappa < 0.7$ to ensure perturbativity
- Various phenomenological and theoretical constraints are checked by NMSSMTools

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0	0	0
	00	0	
	000	•	

BENCHMARKS FOR HIGGS PAIR PRODUCTION IN NMSSM

 $\sigma_{SM}^{LO} = 21.7 \text{ fb}$ $\sigma_{SM}^{NLO} = 42.3 \text{ fb}$

σ^{NLO} (fb)	66.52	72.78	50.97
σ^{LO} (fb)	33.91	37.21	26.08
σ_{res}^{LO} (fb)	3.22×10^{-6}	6.87	$6.30 imes 10^{-3}$
σ_{nr}^{LO} (fb)	33.06	26.84	25.77
σ_{int}^{LO} (fb)	0.85	3.50	0.30
m_{H_1} (GeV)	124.8	124.8	110.1
m_{H_2} (GeV)	1315.9	440.6	125.2
m_{H_3} (GeV)	2550.9	534.0	629.7
$tan\beta$	5.3	1.83	1.6
λ	0.70	0.50	0.58
κ	0.30	0.51	0.30
A_{λ} (GeV)	501.0	33.0	420.0
A_{κ} (GeV)	-500.0	358.0	-665.0
$\mu_{e\!f\!f}$ (GeV)	200.0	-299.0	321.0

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0 00 000	0 0 0	•

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0 00 000	0 0 0	•

► MSSM:

- σ_{nr} is about 8% ~ 10% larger than σ_{SM}^{LO}
- σ_{res} is largest when $\tan\beta$ and m_A are small

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0 00 000	0 0 0	•

► MSSM:

- σ_{nr} is about 8% ~ 10% larger than σ_{SM}^{LO}
- σ_{res} is largest when $\tan\beta$ and m_A are small
- σ_{MSSM} is largest when tan β and m_A are small

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0 00 000	0 0 0	•

► MSSM:

- σ_{nr} is about 8% ~ 10% larger than σ_{SM}^{LO}
- σ_{res} is largest when $\tan\beta$ and m_A are small
- σ_{MSSM} is largest when tan β and m_A are small
- ► NMSSM:

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0 00 000	0 0 0	•

► MSSM:

- σ_{nr} is about 8% ~ 10% larger than σ_{SM}^{LO}
- σ_{res} is largest when $\tan\beta$ and m_A are small
- σ_{MSSM} is largest when $\tan\beta$ and m_A are small

► NMSSM:

• σ_{NMSSM} can be larger than σ_{SM} by 70%

INTRODUCTION	MSSM	NMSSM	SUMMARY
0	0 00 000	0 0 0	•

► MSSM:

- σ_{nr} is about 8% ~ 10% larger than σ_{SM}^{LO}
- σ_{res} is largest when $\tan\beta$ and m_A are small
- σ_{MSSM} is largest when $\tan\beta$ and m_A are small

► NMSSM:

- σ_{NMSSM} can be larger than σ_{SM} by 70%
- σ_{res} is large when $m_{H_2} \approx m_{H_3}$

INTERFERENCE TERM

$$\begin{aligned} |\mathcal{M}|^2 \propto |A_{\triangleright}^H + A_{\triangleright}^{nr} + A_{\Box}^{nr}|^2 \\ &= |A_{\triangleright}^H|^2 + |A_{\triangleright}^{nr} + A_{\Box}^{nr}|^2 + 2Re[A_{\triangleright}^H \times (A_{\triangleright}^{nr} + A_{\Box}^{nr})^*] \end{aligned}$$

The interference term is $2Re[A_{\triangleright}^{H} \times (A_{\triangleright}^{nr} + A_{\square}^{nr})^{*}] = 2Re[A_{\triangleright}^{H} \times A_{\triangleright}^{nr*}] + 2Re[A_{\triangleright}^{H} \times A_{\square}^{nr*}].$ Let $A^{nr} = |A^{nr}|e^{i\delta_{nr}}, a_{res} = C_{Hhh}C_{Htt}F_{\triangleright}$, then

$$egin{aligned} A^H_arphi &= a_{res}rac{\hat{s}}{\hat{s}-m_H^2+i\Gamma_Hm_H} \ &= |a_{res}|e^{i\delta_{res}}\hat{s}rac{\hat{s}-m_H^2-i\Gamma_Hm_H}{(\hat{s}-m_H^2)^2+(\Gamma_Hm_H)^2} \end{aligned}$$

INTERFERENCE TERM

$$2Re[A_{\triangleright}^{H} \times A^{nr*}] = 2Re[|a_{res}||A^{nr}|e^{i(\delta_{res}-\delta_{nr})}\hat{s}\frac{\hat{s}-m_{H}^{2}-i\Gamma_{H}m_{H}}{(\hat{s}-m_{H}^{2})^{2}+(\Gamma_{H}m_{H})^{2}}$$
$$= 2(R_{int}+I_{int})$$
$$R_{int} = |a_{res}||A^{nr}|cos(\delta_{res}-\delta_{nr})\hat{s}\frac{\hat{s}-m_{H}^{2}}{(\hat{s}-m_{H}^{2})^{2}+(\Gamma_{H}m_{H})^{2}}$$
$$I_{int} = |a_{res}||A^{nr}|sin(\delta_{res}-\delta_{nr})\hat{s}\frac{\Gamma_{H}m_{H}}{(\hat{s}-m_{H}^{2})^{2}+(\Gamma_{H}m_{H})^{2}}$$

INTERFERENCE TERM

X_t/M_S contour plot

 κ_t CONTOUR PLOT

$\sigma^{LO}_{MSSM}(no~{\tilde t})/\sigma^{LO}_{SM}$ contour plot

$\sigma_{nr}/\sigma_{SM}^{LO}$ contour plot

NMSSM CONSTRAINTS

PROB(1) chargino too light PROB(2) excluded by Z -> neutralinos PROB(3) charged Higgs too light PROB(4) excluded by ee -> hZ PROB(5) excluded by ee -> hZ, h -> bb PROB(6) excluded by ee -> hZ, h -> tautau PROB(7) excluded by ee -> hZ, h -> invisible PROB(8) excluded by ee -> hZ, h -> 2 jets PROB(9) excluded by ee \rightarrow hZ, h \rightarrow 2photons PROB(10) excluded by ee \rightarrow hZ, h \rightarrow AA \rightarrow 4bs PROB(11) excluded by ee -> hZ, h -> AA -> 4taus PROB(12) excluded by ee -> hZ, h -> AA -> 2bs 2taus PROB(13) excluded by Z -> hA (Z width) PROB(14) excluded by ee -> hA -> 4bs PROB(15) excluded by ee -> hA -> 4taus

PROB(16) excluded by ee -> hA -> 2bs 2taus PROB(17) excluded by ee -> hA -> AAA -> 6bs PROB(18) excluded by ee \rightarrow hA \rightarrow AAA \rightarrow 6taus PROB(19) excluded by ee -> Zh -> ZAA -> Z + light pairs PROB(20) excluded by stop -> b l sneutrino PROB(21) excluded by stop -> neutralino c PROB(22) excluded by sbottom -> neutralino b PROB(23) squark/gluino too light PROB(24) selectron/smuon too light PROB(25) stau too light PROB(26) lightest neutralino is not LSP or < 511 keV PROB(27) Landau Pole in l, k, ht, hb below MGUT PROB(28) unphysical global minimum PROB(29) Higgs soft masses » Msusy PROB(30) excluded by DM relic density (checked only if OMGFLAG=/=0) PROB(31) excluded by DM SI WIMP-nucleon xs (checked if |OMGFLAG| = 2 or 4)PROB(32) b->s gamma more than 2 sigma away PROB(33) Delta M_s more than 2 sigma away PROB(34) Delta M_d more than 2 sigma away PROB(35) B_s ->mu+mu- more than 2 sigma away PROB(36) B+-> tau+ ν_{τ} more than 2 sigma away PROB(37) $(g-2)_{\mu}$ more than 2 sigma away PROB(38) excluded by Upsilon(1S) -> A gamma PROB(39) excluded by $\eta_b(1S)$ mass measurement PROB(40) BR(B $\rightarrow X_s$ mu+ mu-) more than 2 sigma away PROB(41) excluded by ee \rightarrow hZ, h \rightarrow AA \rightarrow 4taus (ALEPH analysis) PROB(42) excluded by top \rightarrow b H+, H+ \rightarrow c s (CDF, D0) PROB(43) excluded by top -> b H+, H+ -> $\tau \nu_{\tau}$ (D0) PROB(44) excluded by top \rightarrow b H+, H+ \rightarrow W+ A1, A1 \rightarrow 2taus (CDF) PROB(45) excluded by $t \rightarrow bH+(LHC)$

PROB(46) No Higgs in the MHmin-MHmax GeV range PROB(47) chi2gam > chi2max PROB(48) chi2bb > chi2max PROB(49) chi2zz > chi2max PROB(51) excluded by H/A->tautau PROB(52) Excluded by H->AA->4leptons/2lept.+2b (LHC) PROB(53) excluded by ggF->H/A->gamgam (65GeV < M < 122GeV, ATLAS) PROB(55) b -> d gamma more than 2 sigma away PROB(56) $B_d \rightarrow mu + mu - more than 2 sigma away$ PROB(57) b -> s nu nubar more than 2 sigma away PROB(58) b -> c tau nu more than 2 sigma away (as SM) PROB(59) K -> pi nu nubar more than 2 sigma away PROB(60) DMK / epsK more than 2 sigma away PROB(61) excluded by DM SD WIMP-neutron xs (checked if |OMGFLAG| = 2 or 4)PROB(62) excluded by DM SD WIMP-proton xs (checked if |OMGFLAG| = 2 or 4)

ALL INPUT PARAMETERS OF NMSSM BENCHMARKS

σ^{NLO} (fb)	66.52	72.78	50.97
σ^{LO} (fb)	33.91	37.21	26.08
σ_{res}^{LO} (fb)	$3.22 imes 10^{-6}$	6.87	6.30×10^{-3}
σ_{nr}^{LO} (fb)	33.06	26.84	25.77
σ_{int}^{LO} (fb)	0.85	3.50	0.30
m_{H_1} (GeV)	124.8	124.8	110.1
$m_{H_2}~({ m GeV})$	1315.9	440.6	125.2
$m_{H_3}~({ m GeV})$	2550.9	534.0	629.7
$tan\beta$	5.3	1.83	1.6
λ	0.70	0.50	0.58
κ	0.30	0.51	0.30
A_{λ} (GeV)	501.0	33.0	420.0
A_{κ} (GeV)	-500.0	358.0	-665.0
$\mu_{e\!f\!f}~({\rm GeV})$	200.0	-299.0	321.0
M_1 (GeV)	124	457	608
M_2 (GeV)	248	386	546
M_3 (GeV)	744	6345	6778
A_t (GeV)	1500	5134	1092
A_b (GeV)	1500	-2908	-4015
A_{τ} (GeV)	1500	-667	2370
m_{Q_3} (GeV)	1000	3175	2574
m_{I_2} (GeV)	200	1276	790