

Constraints on Axion DM from Radio Signals at Neutron Stars

Joshua W. Foster

University of Michigan

JF et al., 190X.XXXXX

Axion-to-Photon Conversion

 Axions can convert in the presence of magnetic fields

- Conversion probability suppressed by mismatched masses
- Efficient resonant conversion by tuning effective photon mass
- This can be done in the lab: CAST Experiment

 $P_{conv} \sim g_{a\gamma\gamma}^2 B^2 L^2$

NS Population Models and Signal Strengths

• Assuming Goldreich-Julian model, calculate the conversion radius

$$r_c = 224 \,\mathrm{km} \times |3\cos\theta \hat{\mathbf{m}} \cdot \hat{\mathbf{r}} - \cos\theta_m|^{1/3} \times \left(\frac{r_0}{10 \,\mathrm{km}}\right) \left[\frac{B_0}{10^{14} \,\mathrm{G}} \frac{1 \,\mathrm{sec}}{P} \left(\frac{1 \,\mathrm{GHz}}{m_a}\right)^2\right]^{1/3}$$

1 10

- Resonant conversion if $r_c < r_0$, otherwise NS is inactive
- Predict power output from neutron star:

$$\frac{dP}{d\Omega} = 4.5 \times 10^8 \,\mathrm{W} \left(\frac{g_{a\gamma\gamma}}{10^{-12} \,\mathrm{GeV}^{-1}}\right)^2 \left(\frac{224 \,\mathrm{km}}{r_c(\Omega)}\right)^4 \left(\frac{B(\Omega)}{5 \times 10^{13} \mathrm{G}}\right)^2 \left(\frac{1 \,\mathrm{GHz}}{m_a}\right) \left(\frac{\rho_{\chi}}{0.3 \,\mathrm{GeV/cm^3}}\right) \left(\frac{200 \,\mathrm{km/s}}{v_0}\right)$$

• Requires accurate modelling of NS properties, NS locations, and the DM phase space

Observational Targets and Data Collection

Galactic Center

Isolated Neutron Stars

Observational Targets and Data Collection

M54 Globular Cluster

M31

Expected Signal: Single Line Excess

- At high axion masses, relatively few neutron stars participate in conversion
- Spectral line searches most promising
- Broader population signal challenging to characterize statistically

Expected Signal: Population Envelope

- At low axion masses, many neutron stars participating
- Can look for spectral lines, but possible large local variance
- Well-characterized population signal
- Complementary search strategy

Expected Signal: Time Variation

- Distinct time-variation due to misalignment of magnetic dipole and rotation axis
- Signal morphology strongly dependent on NS properties
- Allows for detailed follow-ups at wellcharacterized known NS

Data Example: Spectral Line Limits

Data Example: Finding & Vetoing Excesses

Data Example: Joint Excess Rejection

Current Status and Future Projections

Constraints from 1 hour of observation at the Galactic Center

Current Status and Future Projections

Implications for Axion DM Substructure

Questions?