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Where are we standing?

» The search for direct NP did not show any new state.

» Probably they are heavy and there might exist a gap between them and
the SM states.

The remarkable success of the SM and the lack of unexpected
particles motivates to use a different approach to study NP.
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Effective Lagrangian: Linear realization

» We parametrize new physics in terms of a linear effective Lagrangian,
with a light Higgs:

Leg = Lsm + Z An’l Ohn,j
n>4,j

Particle content: Same as the SM. No undiécovered particle at low enérgy.
Symmetries: The SM gauge symmetry SU(3)c ® SU(2). ® U(1)y is linearly
realized. The lepton and baryon numbers are conserved.

> There exist 59 Dimension-6 operators.
[Grzadkowski et al. arXiv: 1008.4884]

[# of relevant operators can be reduced by several considerations]

Data-driven: Operator basis HISZ NP conserves
TGC, EWPD, Higgs | | (EOM to eliminate redudant ones) | | C and P symmetries




Electroweak precision data (EWPD)

» The EWPD receives linear contribution from operators involving
fermions, gauge bosons and the Higgs field:
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Electroweak precision data (EWPD)

» We also have the contribution of a purely fermion operator and bosonic
operators to the EWPD:

Opw = ®'B, W o, Op,1 = (Do) 00T (DFO)  Opyy = (Ly*L) (LML) .

» O¢,1 and Opw contributions are ubiquitous and stem from their effect on
the finite renormalization of the SM fields and couplings once the
lagrangian is canonically normalized (corrections to the Sand T
oblique parameters). O, gives a finite contribution to the Fermi
constant.

» Altogether the part of the dimension—six effective lagrangian that
contributes to the EWPD is,

A ) o
ALEWPD — 7\’200()+7o()+ﬂo()+7o()+£o()
f, fo, fiL
+ oy Osw+ 101 + tOy

NO BLIND DIRECTIONS !l Fully advantage of the EWPD.



Triple Gauge Couplings (TGC) motivation

» The trilinear and quartic vector-boson couplings are completely
determined by the gauge symmetry (SM).
» The scrutiny of these interactions can either lead to an additional

confirmation of the SM or give some hint on the existence of new
phenomena at a higher scale.

» TGC as well as fermion pair-gauge boson couplings contribute to WW
and WZ productions.




Triple Gauge Couplings (TGC) parametrization

» The most general parametrization that describes the WWYV vertices
(V = Z,~) and it is Lorentz invariant can be cast as:

Lwwy = —igwwy [g}’ (w+u W+ — Wt w;,,) Vv
+ky W} W,V 4 W wi, W, V""]

where V,,, = 8.V, — 8.V, W,, =0, W, — 8. W,.

» Any departure from the SM can be parametrized as a shift of the
dimensionless couplings,

9’ — 9/ + ag/.

Electromagnetic invariance = g7 = 1

gww~ =€ =gsinf gZ(SM) k(SM) k(SM) -1

gwwz = gcos @



Triple Gauge Couplings and the d=6 dictionary

» The relevant subset of C and P even bosonic operators in the HISZ basis
relevant to the TGC:
Ow = (D.®)TWrY(D,®) , ©Op = (D,d)IB+(D,®) ,

Opw = ®1B,, Wrvo | Oo,1 = (D, ®)T0OT(DHO)

Owww = Tr[WLWEWY] .
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Triple Gauge Couplings

» One extra operator that modifies the couplings of W to right-handed
quark pairs and does not interfere with the SM contributions to the
EWPD observables (linearly),

<>
o) = &' (iD,®)(Upy"dg + h.c.) .

ud =

» The effective lagrangian of the operators that contribute to TGC (plus the
ones from EWPD):

fwww

f f oY
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Higgs interactions
» The following operators change the Yukawa couplings of the Higgs
boson, Lur = ghyify, fah

Oecojj = (®T®)(Lider;) , Ouo,j= (®TO)(Qidugy) ,

Ogoij = (®10)(Qiddr ;) , Op2 = 30+ (dTd) 5, (dTd)

with the respective effective Lagrangian

ALYuk — f

f f
(’)eo B3+ Odd> 33 + (’)um 33 + h.c.

> ltis basically a shift in the couplings,
v2

f m]
Ghy = — 00 |1 — 77z (Fo1 +2fp2) | +

V2

Va1

» We consider only the diagonal couplings, the third family and also
muon pairs, i.e., the ones that being currently tested at LHC.

» The couplings to the Higgs boson are also modified by the following
bosonic operators,

Oge = oT0 G2,G* , Oyy = ®TW,, W , Opgg = 1B, B+ o



Higgs interactions

» The parametrization that describes the HVV vertices and it is Lorentz
invariant can be cast as:

LHw = OHggGa, G™™ + GHyr A AP h + g\) ALLZNH0"h + g5 AuZ'"h
+ gl(';Z)Zzl‘Vzuayh'i' gsz)zzu.uz”Vh + g(a) Z“Z“h
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Analysis framework

» In the EWPD analysis we take into account 15 observables of which 12
are Z observables and 3 W observables:

z, o9, Ay(rP°"), RS, A,(SLD), A%L, RS, RY, Ac, Ap, A%, A%D (SLD/LEP-I),
My , Tw and Br(W — £v).

» We construct a x? function for the EWPD to perform the statistical
analysis,
Xgwep (faw, fo,1, f.f,a,)c,, fg,)o, fS,L, f.ﬂ)d, fg,l., froed) -
» As for the analysis of TGC, we use the kinematic distribuitions data from

W+ W= and W Z from ATLAS and CMS collaborations:

Channel (a) Distribution # bins Data set Int Lum
WW — et/ +Br (0) | pyadmelepton 3 ATLAS8TeV, 20.3fb—!
WW — £+e)= +Er (0f) | my,) 8 CMS 8 TeV, 19.4 fo—1
WZ — ete—e0)E mWz 6  ATLAS8TeV, 20.3fb~!
WZ — ete—eE By Z candidate p%* 10 CMS 8 TeV, 19.6 fo—1
WW — et puT +Er (0j) | mr 17  ATLAS13TeV, 36.1fb—1
WZ — ete— e+ m¥? 6  ATLAS13TeV, 36.1fb!

3 1 1 1 1 1
X%EWPD-{-EWDBD(fB’ fW’ fWWWa fBWa f0,17 f‘(p,)a’ fé))@, fé;’L, fé,:ja fj;.’Lda f((p,)e5 fLLLL) .



Analysis framework

» As for Higgs processes, we use the available data from Runs 1 and 2.
The main production processes are, ggF, VBF, VH, and {tH.

» We predict the expected signal strengths in the presence of the new
operators, for several final states of the Higgs decay, like
h—~yh—tt h—bbh—VV h—~Z h— 71, h— pp.
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Analysis framework

» As for Higgs processes, we use the available data from Runs 1 and 2.
The main production processes are, ggF, VBF, VH, and ttH.

» We predict the expected signal strengths in the presence of the new
operators, for several final states of the Higgs decay, like
h—>77,h—>?t,h—)l_)b,h—> VV,h—>~2Z,h— 77, h— ppu.

» The statistical comparison of our effective theory predictions with the
LHC Runs 1 and 2 data is made by means of a X%—Iiggs function based
on these 22 (Run 1) + 35 (Run 2) data points. Adding to the previous
ones, we get:

XEwWPD1EWDBD 4+ Higes (78> T, fwww, Tas, fww, faw, faa, fo,1, fo,2, féa,)a' f}:)o, fS’L, fgl,, fﬂ,d, f‘g’)e, fLii, fo, s fry fu)




Results
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» The EWPD analysis favors non-vanishing value for f‘,(:d)/l\2 at 2o, aresult
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» No significant discrepancy is observed between the relevant LHC
observables, but not negligible, in particular for f},‘d)/l\z.



Results

» We can see that Run 2 data is essential to better constrain these Wilson
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Results

Run 1 GLOBAL (20 OP)
Run 1+2 GLOBAL w/o tH (20 OP)
---- Run 142 GLOBAL with tH (20 OP)
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» Both ttH and tH (including tHW and tHj) contribute to the cross section
ratio.

» |tis not possible to determine the relative contribution of tH vs ttH. We
show the results for two extreme assumptions.



Ongoing work

» Study the operators which include dipole-like couplings for the quarks.

Ouw,ij = I'Q,'O'“"UR,I'WMU(D y Ous,ij = iQ,-o”’“’UR’jB,“}D .

OdW,ii = iQ,-a'““dg,i W,“,q) ) OdB,i/' = iOiO'”VdR,I'B“VQ)

= Fi fy* 1O, AL + Fizfyv 18,2, + (forv (FL, L+ FB ,R) 8, W + h.c.)] |

\f/\2[

=> Anomalous magnetic moment

Fuy = fyw + fuB s Fay = faw — faB
1 1 ;

FudW = —fw, Flll-dW = —fgw| = W boson width decay
Sw Sw

s c s ;
Fiz="Yfw—Ytp Foz= Wi — Wy | = Zboson width decay
Sw cw sw Cw

» Can be constrainted by the fit to the LEP observables.

Have these operators any impact on the TGV analysis?



Impact of the dipole operators on the TGV

—— TGV R1+2(140P)+EWPD(80P)

TGV R1+2 (100P) + EWPD(BOF) (DIP=0)
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» The impact of the dipoles is
minimum.

» Neverthless the TGV can impose
strong bounds on the dipole
operators!



Impact of the dipole operators on the TGV

—— TGV R1+2(140P)+EWPD(80P)

TGV R1+2 (100P) + EWPD(BOF) (DIP=0)
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» The impact of the dipoles is
minimum.

> Neverthless the TGV can impose
strong bounds on the dipole
operators!

How these bounds are comparable with
other data set?



Other bounds on the dipole operators

» Drell-Yan cross section at CMS and ATLAS can also impose bounds on
these operators.

Int.Luminosity (fb—!) me # Data points
ATLAS 13 TeV 36 tht 250-6000 GeV 6+6
CMS 13 TeV 36 ! 200-3000 GeV 6+6
ATLAS 8 TeV 20.3 fh=t 200-1500 GeV 8
CMS 8 TeV 19.7 fh~! 200-2000 GeV 11

- DYATAS 13TV
DY CMS 13Tev.

o
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- ATLAS 13 TeV
=== CMS 13 TeV
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Comparison with other bounds

» DY is better than EWPD: larger energy and DY has conttributions from
both Fyz and Fq- couplings.
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Summary

» Altogether the analyses show no statistically significant source of
tension with the SM.

» The impact of the inclusion of the LHC results is still minor but not
negligible for the EWPD bounded operators involving gauge couplings
to quarks.

» The combined Run 2 data constrains the operator coefficients with a bit
better precision to that of the full Run 1 analysis.

» For the dipole operators, we see that the TGV data already puts some
good bounds.

» Drell-Yan process does a better job than EWPD.



Thank you very much!!!



Backup: Discrete (quasi-)degeneracies in the parameter space

» Antecipating the presence of discrete (quasi-)degeneracies in the
parameter space will be useful in terms of computing a x? with 20

parameters.
+ M i . g v v fo,1 fo 2
HW; W™* coefficient : < 5 ) {1 4 <A2 +25
fo,1 fo,2 fo 2 4 o
AZ = = 5 =,z ~ 65TeV
N~~~

Stringent bound from EWPD

Degeneracy with the SM results

HFf coefficient : — ™ {1 -7 <f"’ 2 4 /2l fr )}
v 2
be = o, o ava/v?  asTev?
N2 A Y

N~
2 different values — flipping the sign of the SM HVV

2 X 2 degenerate SM-like solutions




Backup: Discrete (quasi-)degeneracies in the parameter space

HGZ, G coefficient : —1 G2, — sV Te

— — fGG —471' —
G¥,~-53x1072Tev-! = ™ Eegg,SM ~ 25TeV—2

Flipping the sign

SM like solution

2 _—
HGS, G coefficient : — 1 G, + &, Tww + To = fow

f feg — fi 2
6@y ~33x 10Tyt = etz 2 g L gtey-2

Flipping the sign

SM like solution

Measurement of the effective photon-Z-

coupling HF,,,,Z*¥ bounds a different EWPD independently constrains fgy
combination of fyw, fgg and fgw

NS

Aproximate degeneracy



Backup:Linear vs non Linear

Run 1+2 GLOBAL (20 OP)
s Run 142 GLOBAL (20 OP) Linear Expansion
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Backup: How the old analysis change when we introduce the dipole
operators
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