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• Going beyond bump hunting 
in the search for signals of  
new physics 

• A publicly-available package 
for statistical analysis

Nσ



Motivation: Benefits of a Global Analysis

A standard bump search is 
optimized for cases like this: 
here, the presence of a new 
particle increases the rate of 
some process. 

But, not all signals of new 
physics are so simple: 
• Interference Effects 
• Wide Resonances 
• Multiple New States
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Goal for a Global Analysis:
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• Looking for a basis of functions that can pick out global patterns, 
while still identifying local deviations

How can we systematically identify these signs of new physics, when 
the signal is not simply a local deviation from a background model?



The Wavelet Transformation(s)
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A compromise between “frequency” and “position”

Demonstration:  
A discrete signal 
with 16 bins

• A linear, invertible transformation  
• Orthogonal basis of step functions, of various widths and translations



The Wavelet Transformation(s)

B. Lillard                                                                                  Kinematic Wavelet Analysis Kit

A compromise between “frequency” and “position”
• A linear, invertible transformation  
• Basis of step functions, of various widths and translations

First wavelet:  
A single step function, 
spanning the full width: 
• “L=1, j=1”



The Wavelet Transformation(s)
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A compromise between “frequency” and “position”
• A linear, invertible transformation  
• Basis of step functions, of various widths and translations

Next: subdivide each 
section into two: 
• L=2: j=1, j=2 
• L=1: j=1 
The L=1 wavelets have 
a “base of support” of  
8 bins each

• L=2: j=1

• L=2: j=1



The Wavelet Transformation(s)
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A compromise between “frequency” and “position”
• A linear, invertible transformation  
• Basis of step functions, of various widths and translations

At the next-smallest 
level, there are four 
independent step 
functions. 

Each has a base of 
support of 4 bins 
• L=3: j=1, 2, 3, 4 
• L=2: j=1, 2 
• L=1: j=1

• L=3: j=1
• L=3: j=2 • L=3: j=3

• L=3: j=4



The Wavelet Transformation(s)
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A compromise between “frequency” and “position”
• A linear, invertible transformation  
• Basis of step functions, of various widths and translations

The final set of wavelets 
includes 8 step functions, 
each with a base of 
support of 2 bins. 
• L=4:  

  j=1, 2, 3, 4, 5, 6, 7, 8 
• L=3: j=1, 2, 3, 4 
• L=2: j=1, 2 
• L=1: j=1

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8



The Wavelet Transformation(s)
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A compromise between “frequency” and “position”
• A linear, invertible transformation  
• Basis of step functions, of various widths and translations

The wavelet 
transformation converts 
the 16 bin signal into: 
• L=4: 8 
• L=3: 4 
• L=2: 2 
• L=1: 1 
• L=0: 1 
16 wavelet coefficients  



Building A Statistical Analysis Tool

Given a hypothesis for each bin, the 
probability distribution for each 
wavelet coefficient can be calculated… 
• Exactly (with Poisson statistics): 

• Or approximately, by generating a 
large number of pseudoexperiments. 

Then, calculate a likelihood (p-value) for 
each wavelet coefficient to identify the 
significant deviations.
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Figure 2: Statistical distribution for the wavelet coefficient f̃ assuming Poisson distribu-
tions of the two bins of the kinematic distribution f1,2. The two input distributions are
described by their means µ1,2.
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where In is the nth modified Bessel function of the first kind. This probability distribution
is referred to as the Skellam distribution [6]. Its mean, variance, skew, and excess kurtosis
are

µ =µ1 � µ2 �
2 =µ1 + µ2

�1 =
µ1 � µ2

(µ1 + µ2)3/2
�2 =

1

µ1 + µ2
. (10)

In the limit where the Poisson distributions per bin in Eq.(8) becomes Gaussian we also find
µ1 + µ2 � 1 such that �1 and �2 vanish and p(f̃) also approaches the expected Gaussian
shape. We show this probability distribution for the wavelet coefficients in Fig. 2 assuming
Poisson distributions for the bins of the underlying kinematic distribution. The tails of
p(f̃) always show an exponential suppression, and for increasing mean values µ1,2 of the
input distributions the resulting p(f̃) is indeed turning into a Gaussian. In Appendix A,
we provide the probability distribution P (f̃ |H0) for generic values of `  L and m � 1.

As part of a statistical analysis it is of course possible to trace all correlations of the
input distribution f(x) in terms of the binned fj to the wavelet coefficients f̃j . As long as
we only use the wavelet coefficients to visualize the physics behind the possible anomaly
this is not necessary, because we can compute the global significance of the distribution
from the fj directly. On the other hand, it is interesting to see how much of such a global
significance is collected in one wavelet coefficient or a set of wavelet coefficients. Following
the oscillation shown this includes the combination of all wavelet coefficients of a given
level `. From Eq.(6) we see that each bin of the distribution only contributes linearly to a
single wavelet coefficient, so for statistically independent bins of the kinematic distribution
also the wavelet coefficients of one level ` are statistically independent and can be simply
combined in a statistical analysis, as outlined in Appendix A. The situation is different
when we combine different levels into a statistical analysis, for example combining different
local features of different size.
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As a simple example, we add a 
large dip-bump signal on top of a 
falling background, modeled from 
the ATLAS 37 fb-1 diphoton data. 

One wavelet coefficient shows a 
5σ deviation from the background-
only hypothesis. 

The injected signal can be 
recovered by performing the 
inverse wavelet transformation on 
just the 3% most deviant 
coefficients.

• Localized signal is still 
localized in “wavelet space”

Demonstration: A Bump-Dip Signal
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Alternative: plot the value of 
each wavelet coefficient, with 
a color coding based on the 
deviation from the background 
hypothesis

Demonstration: A Bump-Dip Signal
Nσ

• Localized signal is still 
localized in “wavelet space”
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Fixed-Resolution Global 
Significance: 
• Global patterns spanning 

multiple wavelet coefficients 
can be detected by 
combining the significances 
of non-overlapping 
(uncorrelated) bins 

• Collecting all wavelet 
coefficients of the same “L”: 

• L=1:  1.28σ 
• L=2:  3.37σ 
• L=3:  5.39σ 
• L=4:  2.95σ 
• L=5:  2.52σ

Demonstration II: A “Kaluza-Klein” Inspired Model
Nσ
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Fixed Resolution Global 
Significance: 

• L=1: 0.062σ 
• L=2: 0.055σ 
• L=3: 0.083σ 
• L=4: 0.00053σ 
• L=5: 0.59σ 

The ATLAS diphoton data 
shows some 2σ deviations at 
L=5, but nothing at the lower 
levels 

170 GeV                                  800 GeV                             1500 GeV

Demonstration III: ATLAS 37 fb-1 Diphoton
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Global Analyses of Kinematic Distributions with Wavelets  (1905:XXXXX) 
BL, T. Plehn, A. Romero, and T. Tait 

Kinematic Wavelet Analysis Kit: 

• A publicly-available package for global 
analysis 

• Identifies local and global deviations 

• Reconstructs signal with inverse 
transformation 

• Flexible: fast approximation of probability 
distributions, or an alternative arbitrary-
precision calculation (assuming purely 
statistical fluctuations)  

• Easily adapted to other families of  
wavelet transformations 

https://github.com/alexxromero/kwak_wavelets

 Background
“Kaluza-Klein”

Kinematic Variable (Invariant Mass)

R
at

e 
 (N

um
be

r o
f E

ve
nt

s)

signal region?

https://github.com/alexxromero/kwak_wavelets

