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Charm production at DIS: FFN vs ZM schemes
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e O > mg, mg matters, Q(x, 1) ~ 0, Flavor Creation (FFN 3-flv).
e 0> mp, mg~0, O(x, ) matters, Flavor Excitation (ZM 4-flv).
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ACOT series

e Aivazis-Collins-Olness-Tung [proioes introduce an asymptotic subtraction (SB)
term to get rid of the double-counting between Flavor Creation (FC) and Flavor
Excitation (FE), which switches from Ny to Ny + 1 scheme (Variable Flavor
Number Scheme).

FC-SB+FE
e 02 mg, SB~FE, FFN 3-flv scheme.
e 0> mp, SB~FC, ZM 4-flv scheme.

e Simplified-ACOT scheme (1. coliins PRD1998, M. Kramer <. al. PRD2000] treats heavy-quark as
massless in Flavor Excitation. Warning: instability in the cancellation between SB
and FE around the switching point.

e The S-ACOT-) sheme w. tung tal. pca002) introduces rescaling variable
x =x(1 +4mé/Q2) to capture the mass threshold effect.

It stabilizes the perturbative convergence near the switching point by enforcing
energy-momentum conservation in all scattering contributions.

e The S-ACOT-MPS [k xicet al 180x000) SCheme extends the S-ACOT-y method to
hadron-hadron collisions.
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heavy-quark production at colliders

Lots of related experimental data such as D,B mesons at LHCb, b-quark jets at
UA1, DO, CDF, ATLAS, and CMS.

e Forward heavy-quark productions at the LHCb are sensitive to gluon-PDF at

2 2
A/ m=+
small-x, because of X112~ TpTeiy [PROSA arXiv:1503.04581] .

e Physical observable: p?
° p? < mg, Nf Fixed Flavor Number Scheme [p. Nason et. al. NPB1989, W. Beenakker NPB1991],
° pg > mg, Zero-Mass Scheme (Ny + 1),
° p? ~mg, General-Mass Variable Flavor Number Scheme.

e Existing GM-VFNS's for heavy-quark hadroproduction

® FONLL M. Cacciari et. al., hep-ph/9803400, hep-ph/0102134],
o GM-VFNS code [B. kneihi et. al. hep-ph/0410289, 1100.2472],
e S-ACOT-MPS [K. Xie et. al. 19xx.xxxxx] .
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FFNS calculations for b-quark production

Decoupling theorem of FFNS, we should take Ny =4 in both & and PDF running.

e The heavy-quark running in the virtual loops is missing.

e No Flavor Excitation contributions as no heavy-flavor PDF.

=l

If Using Ny =5 PDF in MCFM, MadGraph_aMC@NLO, POWHEG,

e Ny =5 in the o running, e.g. reading directly from LHAPDF;
e No FE contributions, equivalent to Ny =4 in the PDFs.
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ACOT idea: FC-SB+FE.
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Figure 1: Representative diagrams for Flavor Creation (LO and NLO), Flavor Excitation
and SuBtraction terms.Thick (thin) lines indicate massive (massless) quark propagators.

The dot means convolution.

Ideally, we have
e P9 < my, SB~FE, FC dominates (FFNS),
e P> my, SB~FC, FE takes over (ZMS).
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Comparisons with FONLL and GM-VFNS code

e FONLL resums logarithms as fragmentation functions and subtracts the
massless limit of fixed-order where only log terms retained (v cacciari et al., hep-ph/9803400,
hep-ph/0102134].

FONLL = FO + (RS — FOMO) x G(m,pr).
The matching function is tuned to keep lim,,,, o G(m,pr) = 1.
o GM—VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],

oc=FC+FE—Ac, where lim o, =0y+AsC.

m—0

The subtraction term Ao is logarithms, equivalent to FOMO.

e S-ACOT-MPS scheme is equivalent to GM-VFNS, except the subtraction term
is calculated with the convolution of splitting function (. coliins PRO1998, M. Kramer et. al.
PRD200],

SB = 640 ® Poeg @8(%)-
We introduce the massive phase space to capture the threshold effect in FE and

SB by following the idea S—ACOT—% schemew. Tung et.al. 1pG2002].
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NLO cross section: massless vs. massive phase space.

SACOT-MPS: The matching instability is tamed by the massive phase space.
FONLL deals it with a tuned a tuned matching function G(m,pr)
GM-VFNS has to impose a cut pg > myg.
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Figure 2: The FC is calculated with MCFM, which is cross-checked with MadGraph_aMC@NLQ
and FONLL online web. The BT is corrected back to the h-quark with fragmentation ratio
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S-ACOT-MPS vs. LHCb data: the p’; distribution
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Figure 3: We choose CT14 PDF. The scale and m;, uncertainties are calculated by varying

pr = pr = (1/2,1,2)/p}+m and my, =4.75+£0.25 GeV.
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NLO scale uncertainties are large.

e o (ug) is large and varies drastically around g ~ mg,
e Heavy-flavor PDF Q(x, ir) starts to be generated perturbatively at pp = mg.

We can introduce the ratio observables Ry, /g, (X) = ggg; in which theoretical

uncertainties cancel significantly . mangano 12063557,
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Figure 4: LHCb measurements of DO production at 7 TeV [13022864], and the cross section
ratio R(13TeV/7TeV) of BT pr distribution 71004021,
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S-ACOT-MPS vs. LHCb data: the ratio R(13TeV/7TeV)

Theoretical uncertainties cancel, especially the scale uncertainty.
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NLO vs. LHCb data: double-differential cross section
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Figure 5: Double differential cross section for 7 TeV. Yellow bands are the total theoretical
uncertainties, added in quadrature. Good overall agreement.
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13 TeV case
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Figure 6: Double differential cross section for 13 TeV.
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NLO vs. LHCb data: ratios of double-diff. cross sections
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CT14 Hessian profiling with ePump

LHCbBX(w10): CT14 PDF updated with wight 1(10) LHCb B* data. Caveat: We
treat the systematic errors as uncorrelated, since we do not have the full correlated
uncertainties.

2.0 T T T T T 20 T T T T T
2(x,Q) at Q =5.0 GeV 90%C.L. 2(x,Q) at Q =5.0 GeV 90%C.L.
=] =
§ 1.5 g 1.5
5 z
2 S
S 1.0 g 1.0
& £
i
2os5p i &05F 1
CT14nn CT14nn
LHCbBX/CT14nn LHCbBX
, , LHCbBX 10/CTl4nn | ) 2 | . LHCbBX, 10 | | ) :
0.0 T 03 ) 3l 0.0 T3 =2 Al
107 10 10 « 100 0.2 05 09 107 10 10 . 100 0.2 05 09

We observe the impact on gluon PDF, but still mild, because

e CT14 PDF describe the data very well,

e The experimental uncertainties are still large.
SACOT-MPS 15/17



PROSA15 PDFs fitting 7 TeV LHCb

charm data
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Next rounds of LHCb measurements may help constrain the small-x gluon
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e We develop S-ACOT-MPS scheme calculations to the heavy-flavor
hadroproduction.

e Contributions to inclusive heavy quark from both Flavor Creation and Flavor
Excitation;
e The double-counted term from gluon splitting is subtracted;
e We introduce massive phase space to capture the threshold effect.
e We obtain good cancellations behaviors in both asymptotic limits:
e pr < myg, the SB cancels the FE terms,
e pr > myg, the SB cancels the FC terms.
e Our calculations agree well with the LHCb B* measurements.

e With theoretical uncertainties cancel significantly, the ratio observables impact
the gluon-PDF in the small-x region. The precise data in next rounds can
potentially provide strong constraints.

e Implementation in MCFM can be easily extended to NNLO, and applied to other
heavy-quark processes, such as H/V + Q.
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