Heavy flavor production at hadron colliders

Simplified ACOT scheme with Massive Phase Space (SACOT-MPS)

Keping Xie 1 John Campbell 2 Pavel Nadolsky 1


Pheno 2019 @ Pittsburgh

 $^{1}\mathsf{Department}$ of Physics, Southern Methodist University, Dallas, TX 75275-0175

²Fermilab, PO Box 500, Batavia, IL 60510, USA

Keping Xie (SMU) SACOT-MPS 1/17

Charm production at DIS: FFN vs ZM schemes

- $Q \gtrsim m_Q$, m_Q matters, $Q(x,\mu) \approx 0$, Flavor Creation (FFN 3-flv).
- $Q\gg m_Q$, $m_Q\approx 0$, $Q(x,\mu)$ matters, Flavor Excitation (ZM 4-flv).

Keping Xie (SMU) SACOT-MPS 2/17

ACOT series

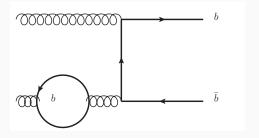
• Aivazis-Collins-Olness-Tung [PRD1994] introduce an asymptotic subtraction (SB) term to get rid of the double-counting between Flavor Creation (FC) and Flavor Excitation (FE), which switches from N_f to N_f+1 scheme (Variable Flavor Number Scheme).

- $Q \gtrsim m_Q$, $SB \simeq FE$, FFN 3-flv scheme.
- $Q\gg m_Q$, $SB\simeq FC$, ZM 4-flv scheme.
- Simplified-ACOT scheme [J. Collins PRD1998, M. Kramer et. al. PRD2000] treats heavy-quark as
 massless in Flavor Excitation. Warning: instability in the cancellation between SB
 and FE around the switching point.
- The S-ACOT- χ sheme [W. Tung et al. JPG2002] introduces rescaling variable $\chi = x(1+4m_Q^2/Q^2)$ to capture the mass threshold effect. It stabilizes the perturbative convergence near the switching point by enforcing energy-momentum conservation in all scattering contributions.
- The S-ACOT-MPS [K. Xie et. al. 18000000] scheme extends the S-ACOT- χ method to hadron-hadron collisions.

Keping Xie (SMU) SACOT-MPS 3/17

heavy-quark production at colliders

Lots of related experimental data such as D,B mesons at LHCb, b-quark jets at UA1, D0, CDF, ATLAS, and CMS.

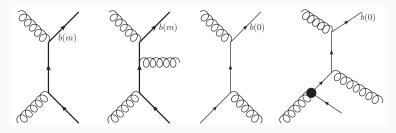

- Forward heavy-quark productions at the LHCb are sensitive to gluon-PDF at small-x, because of $x_{1,2}\sim \frac{\sqrt{m^2+p_T^2}}{\sqrt{s}}e^{\pm y}$ [PROSA arXiv:1503.04581].
- Physical observable: p_T^Q
 - ullet $p_T^Q \ll m_Q$, N_f Fixed Flavor Number Scheme [P. Nason et. al. NPB1989, W. Beenakker NPB1991],
 - $p_T^Q \gg m_Q$, Zero-Mass Scheme $(N_f + 1)$,
 - $p_T^Q \sim m_Q$, General-Mass Variable Flavor Number Scheme.
- Existing GM-VFNS's for heavy-quark hadroproduction
 - FONLL [M. Cacciari et. al., hep-ph/9803400, hep-ph/0102134],
 - GM-VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],
 - S-ACOT-MPS [K. Xie et. al. 19xx.xxxxx].

Keping Xie (SMU) SACOT-MPS 4/17

FFNS calculations for *b*-quark production

Decoupling theorem of FFNS, we should take $N_f=4$ in both α_s and PDF running.

- The heavy-quark running in the virtual loops is missing.
- No Flavor Excitation contributions as no heavy-flavor PDF.



If Using $N_f=5$ PDF in MCFM, MadGraph_aMC@NLO, POWHEG,

- $N_f = 5$ in the α_s running, e.g. reading directly from LHAPDF;
- No FE contributions, equivalent to $N_f = 4$ in the PDFs.

Keping Xie (SMU) SACOT-MPS 5/17

ACOT idea: FC-SB+FE.

Figure 1: Representative diagrams for Flavor Creation (LO and NLO), Flavor Excitation and SuBtraction terms. Thick (thin) lines indicate massive (massless) quark propagators. The dot means convolution.

Ideally, we have

- $p_T^Q \ll m_Q$, SB \simeq FE, FC dominates (FFNS),
- $p_T^Q \gg m_Q$, SB \simeq FC, FE takes over (ZMS).

Keping Xie (SMU) SACOT-MPS 6/17

Comparisons with FONLL and GM-VFNS code

FONLL resums logarithms as fragmentation functions and subtracts the
massless limit of fixed-order where only log terms retained [M. Cacciari et. al., hep-ph/9803400,
hep-ph/0102134].

$$FONLL = FO + (RS - FOM0) \times G(m, p_T).$$

The matching function is tuned to keep $\lim_{m/p_T\to 0} G(m,p_T)=1$.

• GM-VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],

$$\sigma = FC + FE - \Delta \sigma$$
, where $\lim_{m \to 0} \sigma_m = \sigma_0 + \Delta \sigma$.

The subtraction term $\Delta \sigma$ is logarithms, equivalent to FOM0.

S-ACOT-MPS scheme is equivalent to GM-VFNS, except the subtraction term
is calculated with the convolution of splitting function [J. Collins PRD1998, M. Kramer et. al.
PRD2001.

$$SB = \hat{\sigma}_{gQ} \otimes P_{Q \leftarrow g} \otimes g(x).$$

We introduce the massive phase space to capture the threshold effect in FE and SB by following the idea S-ACOT- χ scheme_[W. Tung et.al. JPG2002].

Keping Xie (SMU) SACOT-MPS 7/17

NLO cross section: massless vs. massive phase space.

SACOT-MPS:The matching instability is tamed by the massive phase space. FONLL deals it with a tuned a tuned matching function $G(m,p_T)$ GM-VFNS has to impose a cut $p_T^Q>m_Q$.

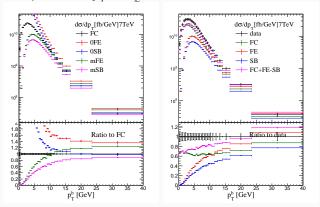
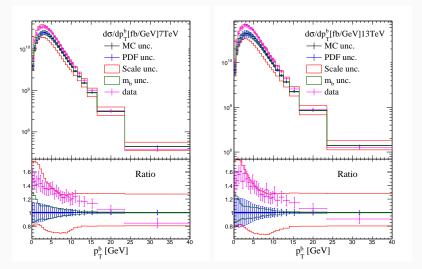
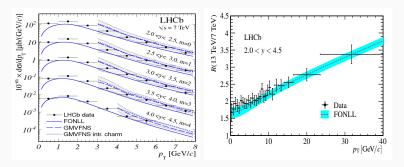


Figure 2: The FC is calculated with MCFM, which is cross-checked with MadGraph_aMC@NLO and FONLL online web. The B^\pm is corrected back to the b-quark with fragmentation ratio

Keping Xie (SMU) SACOT-MPS 8/17

S-ACOT-MPS vs. LHCb data: the p_T^b distribution



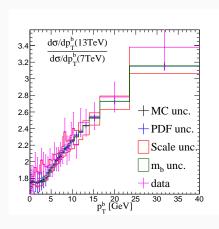

Figure 3: We choose CT14 PDF. The scale and m_b uncertainties are calculated by varying $\mu_R=\mu_F=(1/2,1,2)\sqrt{p_T^2+m_Q^2}$ and $m_b=4.75\pm0.25$ GeV.

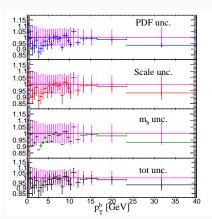
Keping Xie (SMU) SACOT-MPS 9/17

NLO scale uncertainties are large.

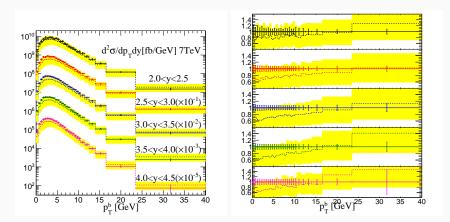
- $\alpha_s(\mu_R)$ is large and varies drastically around $\mu_R \sim m_Q$,
- Heavy-flavor PDF $Q(x, \mu_F)$ starts to be generated perturbatively at $\mu_F = m_Q$.

We can introduce the ratio observables $R_{E_1/E_2}(X)=rac{\sigma(X,E_1)}{\sigma(X,E_2)}$, in which theoretical uncertainties cancel significantly [M. Mangano 1206.3557].




Figure 4: LHCb measurements of D^0 production at 7 TeV [1302.2864], and the cross section ratio R(13TeV/7TeV) of B^\pm p_T distribution [1710.04921].

Keping Xie (SMU) SACOT-MPS 10/17


S-ACOT-MPS vs. LHCb data: the ratio R(13TeV/7TeV)

Theoretical uncertainties cancel, especially the scale uncertainty.

Keping Xie (SMU) SACOT-MPS 11/17

Figure 5: Double differential cross section for 7 TeV. Yellow bands are the total theoretical uncertainties, added in quadrature. Good overall agreement.

Keping Xie (SMU) SACOT-MPS 12/17

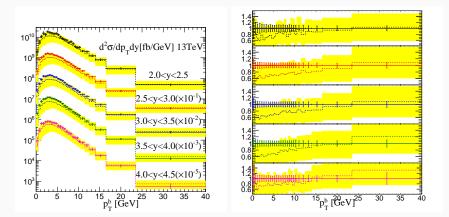
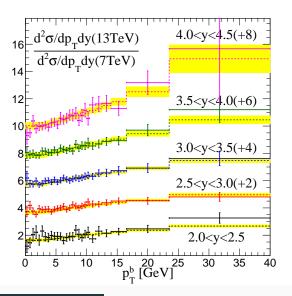
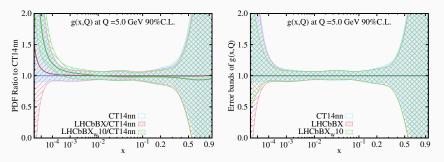



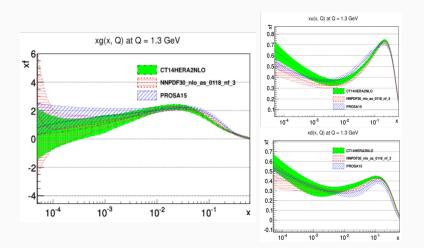
Figure 6: Double differential cross section for 13 TeV.


Keping Xie (SMU) SACOT-MPS 13/17

NLO vs. LHCb data: ratios of double-diff. cross sections

Keping Xie (SMU) SACOT-MPS 14/17

LHCbBX(w10): CT14 PDF updated with wight 1(10) LHCb B^\pm data. Caveat: We treat the systematic errors as uncorrelated, since we do not have the full correlated uncertainties.



We observe the impact on gluon PDF, but still mild, because

- CT14 PDF describe the data very well,
- The experimental uncertainties are still large.

Keping Xie (SMU) SACOT-MPS 15/17

PROSA15 PDFs fitting 7 TeV LHCb charm data parameter, compatible with CT14HERA2NLO $N_f=3$.

Next rounds of LHCb measurements may help constrain the small-x gluon.

Keping Xie (SMU) SACOT-MPS 16/17

Summary

- We develop S-ACOT-MPS scheme calculations to the heavy-flavor hadroproduction.
 - Contributions to inclusive heavy quark from both Flavor Creation and Flavor Excitation;
 - The double-counted term from gluon splitting is subtracted;
 - We introduce massive phase space to capture the threshold effect.
- We obtain good cancellations behaviors in both asymptotic limits:
 - $p_T \ll m_O$, the SB cancels the FE terms,
 - $p_T \gg m_O$, the SB cancels the FC terms.
- ullet Our calculations agree well with the LHCb B^\pm measurements.
- With theoretical uncertainties cancel significantly, the ratio observables impact
 the gluon-PDF in the small-x region. The precise data in next rounds can
 potentially provide strong constraints.
- Implementation in MCFM can be easily extended to NNLO, and applied to other heavy-quark processes, such as H/V+Q.

Keping Xie (SMU) SACOT-MPS 17/17