Type-II seesaw Scalar Triplet Model at a 100TeV pp collider

Yong Du

Pheno 2019 Pittsburgh, May 7, 2019 In collaboration with Aaron Dunbrack Michael Ramsey-Musolf Jiang-Hao Yu

Based on JHEP 1901 (2019) 101

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

- Motivations for the complex triplet model
- Model key features
- Model discovery
- Higgs portal parameter determination
- Summary

Motivations

Neutrino oscillation

Neutrinos are massive, masses are generated through a type-II seesaw mechanism. (P.F. Perez, T. Han, G. Huang, T. Li, K. Wang, 2008)

Baryon asymmetry of the Universe

Electroweak baryogenesis from the Higgs portal.

Roadmap for future colliders

CEPC (China), ILC (Japan), FCC (Europe)

$\Delta(1,3,2)$

$V(\Phi, \Delta) = -m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_2 \Delta^{\dagger} \Phi + \mathrm{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2$ $+ \lambda_2 \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$

$\Delta(1,3,2)$

$$V(\Phi, \Delta) = -m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_2 \Delta^{\dagger} \Phi + \mathrm{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{1 + \frac{2v_\Delta^2}{v_\Phi^2}}{1 + \frac{4v_\Delta^2}{v_\Phi^2}}$$

$$ho = 1.0006 \pm 0.0009$$
 PDG, 2016

$$0 \le v_{\Delta} \lesssim 3.0 \text{ GeV}$$

 $v_{\Delta} \ll v_{\Phi} \simeq v$
 $v = \sqrt{v_{\Delta}^2 + v_{\Phi}^2} = 246 \text{ GeV}$

$\Delta(1,3,2)$

$$V(\Phi, \Delta) = -m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_2 \Delta^{\dagger} \Phi + \mathrm{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{1 + \frac{2v_\Delta^2}{v_\Phi^2}}{1 + \frac{4v_\Delta^2}{v_\Phi^2}}$$
$$\rho = 1.0006 \pm 0.0009$$
PDG, 2016
$$0 \le v_\Delta \lesssim 3.0 \text{ GeV}$$
$$v_\Delta \ll v_\Phi \simeq v$$

 $v = \sqrt{v_{\Delta}^2 + v_{\Phi}^2} = 246 \,\mathrm{GeV}$

$$\sin\beta_{\pm} \sim \sin\beta_0 \sim \sin\alpha \sim \frac{v_{\Delta}}{v_{\Phi}} \sim 0$$

$$m_h^2 \simeq 2v_{\Phi}^2 \lambda_1 \simeq 2v^2 \lambda_1, \quad m_H \simeq m_{\Delta} \simeq m_A, \quad m_{H^{\pm}}^2 \simeq m_{\Delta}^2 - \frac{\lambda_5}{4} v_{\Phi}^2, \quad m_{H^{\pm\pm}}^2 \simeq m_{\Delta}^2 - \frac{\lambda_5}{2} v_{\Phi}^2$$

$$\begin{array}{cccc} m_h^2\simeq 2v_\Phi^2\lambda_1\simeq 2v^2\lambda_1, & m_H\simeq m_\Delta\simeq m_A, & m_{H^\pm}^2\simeq m_\Delta^2-\frac{\lambda_5}{4}v_\Phi^2, & m_{H^{\pm\pm}}^2\simeq m_\Delta^2-\frac{\lambda_5}{2}v_\Phi^2\\ & & & \\ & &$$

$$\Delta m = |m_{H^{\pm\pm}} - m_{H^{\pm}}| \approx |m_{H^{\pm}} - m_{H,A}| \approx \frac{|\lambda_5|v_{\Phi}^2}{8m_{\Delta}} \approx \frac{|\lambda_5|v^2}{8m_{\Delta}}$$
Determined by mass splitting
$$m_h^2 \simeq 2v_{\Phi}^2 \lambda_1 \simeq 2v^2 \lambda_1, \quad m_H \simeq m_{\Delta} \simeq m_A, \quad m_{H^{\pm}}^2 \simeq m_{\Delta}^2 - \frac{\lambda_5}{4}v_{\Phi}^2, \quad m_{H^{\pm\pm}}^2 \simeq m_{\Delta}^2 - \frac{\lambda_5}{2}v_{\Phi}^2$$
Fixed by SM
Higgs mass
$$\lambda_1 \simeq 0.129$$

$$\begin{split} \Delta m &= |m_{H^{\pm\pm}} - m_{H^{\pm}}| \approx |m_{H^{\pm}} - m_{H,A}| \approx \frac{|\lambda_5|v_{\Phi}^2}{8m_{\Delta}} \approx \frac{|\lambda_5|v^2}{8m_{\Delta}} \\ & \text{Determined by mass splitting} \\ & & & & & \\ m_h^2 \simeq 2v_{\Phi}^2 \lambda_1 \simeq 2v^2 \lambda_1, \quad m_H \simeq m_{\Delta} \simeq m_A, \quad m_{H^{\pm}}^2 \simeq m_{\Delta}^2 - \frac{\lambda_5}{4} v_{\Phi}^2, \quad m_{H^{\pm\pm}}^2 \simeq m_{\Delta}^2 - \frac{\lambda_5}{2} v_{\Phi}^2 \\ & & & & & \\ \text{Fixed by SM} \\ & & \text{Higgs mass} \\ \lambda_1 \simeq 0.129 \end{split}$$

$$m_h^2 \simeq 2v_{\Phi}^2 \lambda_1 \simeq 2v^2 \lambda_1, \ m_H \simeq m_{\Delta} \simeq m_A, \ m_{H^{\pm}}^2 \simeq m_{\Delta}^2 - \overbrace{4}^{\lambda_5} v_{\Phi}^2, \ m_{H^{\pm\pm}}^2 \simeq m_{\Delta}^2 - \frac{\lambda_5}{2} v_{\Phi}^2$$

Also determines the mass hierarchy

$$\lambda_5 \le 0: \ m_h < m_H \simeq m_A \le m_{H^{\pm}} \le m_{H^{\pm\pm}}$$

$$\begin{split} V(\Phi, \Delta) &= -m^2 \Phi^{\dagger} \Phi + M^2 \mathrm{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_2 \Delta^{\dagger} \Phi + \mathrm{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2 \\ &+ \lambda_2 \left[\mathrm{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \mathrm{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \mathrm{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi \end{split}$$ How determine?

$$V(\Phi, \Delta) = -m^{2} \Phi^{\dagger} \Phi + M^{2} \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{T} i \tau_{2} \Delta^{\dagger} \Phi + \text{h.c.} \right] + \lambda_{1} (\Phi^{\dagger} \Phi)^{2} \\ + \lambda_{2} \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^{2} + \lambda_{3} \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \frac{\lambda_{4} (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_{5} \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi}{\mathbf{I}} \\ \mathbf{How determine}$$

$$Br(A \to hZ, H \to ZZ, H \to W^+W^-, H^{\pm} \to hW^{\mp}) = F(\lambda_4, \lambda_5, ...)$$

Brief summary

$$\lambda_1 = 0.129, \lambda_2 = 0.2, \lambda_3 = 0, \lambda_4 = 0, \lambda_5 = -0.1$$

$$\lambda_1 = 0.129, \lambda_2 = 0.2, \lambda_3 = 0, \lambda_4 = 0, \lambda_5 = -0.1$$

 $\lambda_2 = 0.2$ $\lambda_3 = 0$ $\lambda_4 = 0$ $\lambda_5 = -0.1$

ATLAS, JHEP03, 041(2015) ATLAS, Eur. Phys. J C78 (2018)

$$\Delta m = |m_{H^{\pm\pm}} - m_{H^{\pm}}| \approx |m_{H^{\pm}} - m_{H,A}| \approx \frac{|\lambda_5|v_{\Phi}^2}{8m_{\Delta}} \approx \frac{|\lambda_5|v^2}{8m_{\Delta}}$$

Upon discovery, λ_5 can be determined readily by the mass splitting.

$$\Delta m = |m_{H^{\pm\pm}} - m_{H^{\pm}}| \approx |m_{H^{\pm}} - m_{H,A}| \approx \frac{|\lambda_5|v_{\Phi}^2}{8m_{\Delta}} \approx \frac{|\lambda_5|v^2}{8m_{\Delta}}$$

Upon discovery, λ_5 can be determined readily by the mass splitting.

Can determine λ_4 from precise measurements on Br($H^\pm \to h W^\pm$) after discovery.

Parameter scan on the v_{Δ} - m_{Δ} plane and BDT analysis for

$$pp \to H^{\pm\pm}H^{\mp} \to \ell^{\pm}\ell^{\pm}hW^{\mp}/W^{\pm}W^{\pm}hW^{\mp}$$

Yong Du

Summary

- 1. Can generate neutrino masses through a type-II seesaw mechanism and explain BAU via EW baryogenesis. Same-sign di-lepton channel is the smoking-gun signature.
- 2. $pp \rightarrow H^{++}H^{--}/H^{\pm\pm}H^{\mp}$ with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}/W^{\pm}W^{\pm}$, $H^{\pm} \rightarrow hW^{\pm}$ could cover a significant portion of the CTHM parameter space for model discovery.
- 3. Upon discovery, the Higgs portal parameter λ_5 can be determined from the mass splitting, λ_4 can be determined from precise measurements on Br($H^{\pm} \rightarrow hW^{\pm}$)
- 4. $h \rightarrow \gamma \gamma$ decay rate can indirectly help λ_4 determination by excluding a large part of the parameter space.

Yong Du

CTHM setup

SM Higgs Doublet

Complex triplet (1,3,2)

$$\Phi = \begin{bmatrix} \varphi^+ \\ \frac{1}{\sqrt{2}}(\varphi + i\chi) \end{bmatrix} \qquad \Delta = \begin{bmatrix} \frac{\Delta^+}{\sqrt{2}} & H^{++} \\ \frac{1}{\sqrt{2}}(\delta + i\eta) & -\frac{\Delta^+}{\sqrt{2}} \end{bmatrix}$$

Potential

$$V(\Phi, \Delta) = -m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_2 \Delta^{\dagger} \Phi + \mathrm{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$

Kinetic Lagrangian

$$\mathcal{L}_{\rm kin} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) + {\rm Tr}[(D_{\mu}\Delta)^{\dagger} (D^{\mu}\Delta)]$$

$$D_{\mu}\Phi = \left(\partial_{\mu} + i\frac{g}{2}\tau^{a}W_{\mu}^{a} + i\frac{g'Y_{\Phi}}{2}B_{\mu}\right)\Phi$$
$$D_{\mu}\Delta = \partial_{\mu}\Delta + i\frac{g}{2}[\tau^{a}W_{\mu}^{a}, \Delta] + i\frac{g'Y_{\Delta}}{2}B_{\mu}\Delta$$

UMass-Amherst ACFI

Model key features: Type-II seesaw mechanism

$$\mathcal{L}_Y = (h_{\nu})_{ij} \overline{L^{ic}} i\tau_2 \Delta L^j + \text{h.c.}$$

$$\stackrel{\text{EWSB}}{\longrightarrow} (m_{\nu})_{ij} = \sqrt{2} (h_{\nu})_{ij} v_{\Delta} \longrightarrow h_{\nu} \text{ can be } \mathcal{O}(1)$$

Lepton number violated by 2, and we have the same-sign di-lepton channel for the doubly charged component of the triplet--Smoking-gun signature for the triplet

$$\begin{pmatrix} \varphi^{\pm} \\ \Delta^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta_{\pm} & -\sin \beta_{\pm} \\ \sin \beta_{\pm} & \cos \beta_{\pm} \end{pmatrix} \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix}$$
$$\begin{pmatrix} \chi \\ \eta \end{pmatrix} = \begin{pmatrix} \cos \beta_{0} & -\sin \beta_{0} \\ \sin \beta_{0} & \cos \beta_{0} \end{pmatrix} \begin{pmatrix} G^{0} \\ A \end{pmatrix}$$
$$\begin{pmatrix} \varphi \\ \delta \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$$

$$\sin \beta_{\pm} = \frac{\sqrt{2}v_{\Delta}}{\sqrt{v_{\Phi}^2 + 2v_{\Delta}^2}}$$
$$\sin \beta_0 = \frac{2v_{\Delta}}{\sqrt{v_{\Phi}^2 + 4v_{\Delta}^2}}$$
$$\tan 2\alpha = \frac{v_{\Delta}}{v_{\Phi}} \cdot \frac{2v_{\Phi}\lambda_{45} - \frac{2\sqrt{2}\mu v_{\Phi}}{v_{\Delta}}}{2v_{\Phi}\lambda_1 - \frac{v_{\Phi}\mu}{\sqrt{2}v_{\Delta}} - \frac{2v_{\Delta}^2\lambda_{23}}{v_{\Phi}}}$$
$$\lambda_{ij} \equiv \lambda_i + \lambda_j$$
$$v \equiv \sqrt{v_{\Delta}^2 + v_{\Phi}^2} = 246 \,\text{GeV}$$

UMass-Amherst ACFI

$$V(\Phi, \Delta) = -m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_2 \Delta^{\dagger} \Phi + \mathrm{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$

Vertex	Coupling
hAZ	$-\frac{g}{2\cos\theta_W}(\cos\alpha\sin\beta_0 - 2\sin\alpha\cos\beta_0)$
HZZ	$\frac{2iem_Z}{\sin 2\theta_W} (2\sin\beta_0\cos\alpha - \cos\beta_0\sin\alpha)$
HW^+W^-	$igm_Z\cos\theta_W(\sin\beta_0\cos\alpha - \cos\beta_0\sin\alpha)$
hH^-W^+	$\frac{ig}{2}(\sin\beta_{\pm}\cos\alpha - \sqrt{2}\cos\beta_{\pm}\sin\alpha)$

Yong Du

Arhrib et al, PRD84, 095005 (2011) Bonilla et al, PRD92, 075028 (2015)

Perturbative unitarity

UMass-Amherst ACFI

$$\lambda_1 = 0.129, \lambda_2 = 0.2, \lambda_3 = 0, \lambda_4 = 0, \lambda_5 = -0.1$$

Arhrib et al, PRD84, 095005 (2011) Bonilla et al, PRD92, 075028 (2015)

$$\lambda_1 = 0.129, \lambda_2 = 0.2, \lambda_3 = 0, \lambda_4 = 0, \lambda_5 = -0.1$$

Chao et al (2012), Riesselmann et al (2012) Machacek and Vaughn (1983, 1984, 1985)

 $\mathbf{H}^{\pm\pm}$

 \mathbf{H}^{\pm}

Yong Du

 \mathbf{H}^{\pm}

 \mathbf{H}^{\pm}

Yong Du

Yong Du

Signal and bkgs

 E_T : Missing transverse energy; HT: Scalar sum of transverse momentum $m_{H^{++}}$: Positively doubly-charged Higgs mass, $m_{H^{--}}$: Negatively doubly-charged Higgs mass $p_{T,\ell^+}^{\text{leading}}$, $p_{T,\ell^+}^{\text{sub-leading}}$: Transverse momentum of the ℓ^+ with leading and sub-leading p_T respectively $p_{T,\ell^-}^{\text{leading}}$, $p_{T,\ell^-}^{\text{sub-leading}}$: Transverse momentum of the ℓ^- with leading and sub-leading p_T respectively $\Delta\phi_{\ell^+\ell^+}$, $\Delta R_{\ell^+\ell^+}$: $\Delta\phi$ and ΔR of the two positively charged leptons $\Delta\phi_{\ell^-\ell^-}$, $\Delta R_{\ell^-\ell^-}$: $\Delta\phi$ and ΔR of the two negatively charged leptons $m_{Z,1}$, $m_{Z,2}$: Two minimal combinations of the four leptons with same flavor and opposite charges

$$R_{h\gamma\gamma} = \frac{\Gamma^{\rm NP}(h \to \gamma\gamma) + \Gamma^{\rm SM}(h \to \gamma\gamma)}{\Gamma^{\rm SM}(h \to \gamma\gamma)}$$

Kanemura et al, PRD85, 115009 (2012) Arhrib et al, JHEP04, 136 (2012)

Yong Du