Abstract

IceCube has measured high energy astrophysical neutrinos for the first time providing a powerful new probe of the universe, but many questions still remain. I will explore one strange quirk in the data. Despite generally large astrophysical uncertainties, I will show that this tension cannot be resolved with standard physics. The simplest consistent explanation is that some neutrinos are decaying. Finally, I will wrap up with predictions and a path forward.

Partial Neutrino Decay Addresses the Track – Cascade Tension at IceCube

Peter B. Denton

Pheno 2019

May 6, 2019

with I. Tamborra 1805.05950

IceCube Measures:

► Flavor(ish)

► Direction

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 2/20

IceCube Measures: Tracks and Cascades \approx Flavor

IceCube Measures: Flavor

Flavor alone disfavors neutron decay:

M. Bustamante, M. Ahlers 1901.10087

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 4/20

IceCube Measures: Energy

- IceCube has measured the spectrum:
 - ► Cascade: $\Delta E_{\nu}/E_{\nu} \sim 10\%$
 - Track: $\Delta E_{\nu}/E_{\nu} > 10\%$

IC 1405.5303

Can constrain various source models:

K. Murase 1511.01590

PBD, I. Tamborra 1711.00470

T. Sudoh, T. Totani, N. Kawanaka, 1801.09683

PBD, I. Tamborra 1802.10098

IceCube Measures: Direction

<9.5% galactic fraction at 90% CL

PBD, D. Marfatia, T. Weiler 1703.09721

IC 1707.03416

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 6/20

IceCube Measures:

► Direction

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 7/20

Both Flavor and Energy Information Together

	π	μ	n
$r_{ m th}$	0.21 ± 0.01	0.29 ± 0.04	0.11 ± 0.02
$r_{\rm obs}^{\rm HESE+TGM}$	2.0σ	2.6σ	compatible
$r_{\rm obs}^{\rm HESE \ only}$	compatible	compatible	1.7σ

A. Palladino 1902.08630

Preference for neutron decay over pion decay or damped muon!

Peter B. Denton (BNL)

Tension

"The p-value for obtaining the combined fit result and the result reported here from an unbroken powerlaw flux is 3.3σ , and is therefore in significant **tension**."

IC 1607.08006

"This [cascade] fit [is] in **tension** with previous results based on through-going muons" IC 1808.07629

Conventional Wisdom

- ▶ High energy neutrinos are produced from full π decay
- ▶ Flavor ratio at source of 1:2:0 converts to 1:1:1* at Earth
- ▶ All neutrinos have the same energy[†]

*the fact that this ratio is 1:1:1 is coincidental not fundamental † also a coincidence; kinematic corrections are small

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 10/20

Conventional Wisdom

- ▶ High energy neutrinos are produced from full π decay
- ▶ Flavor ratio at source of 1:2:0 converts to 1:1:1* at Earth
- ▶ All neutrinos have the same energy[†]

Some of these must be incorrect.

*the fact that this ratio is 1:1:1 is coincidental not fundamental † also a coincidence; kinematic corrections are small

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 10/20

Need a phenomenon that non-trivially depends on energy and flavor at the same time

Muon Cooling

$$\pi \to \nu_{\mu} + \mu$$
$$\mu \to \nu_{\mu} + \nu_{e} + e$$

- ► E.g. synchrotron
- More ν_{μ} at high energy
- \blacktriangleright E_b determined by B field

Peter B. Denton (BNL)

Muon Cooling

$$\pi \to \nu_{\mu} + \mu$$
$$\mu \to \nu_{\mu} + \nu_{c} + e$$

Other Options

Neutron decay: $n \to p + e + \bar{\nu}_e$

- ▶ Produces extra ν_e 's
- Produced with pions in $p\gamma$ interactions
- ▶ Also come from photodisociation of heavy ions

Other Options

Neutron decay: $n \to p + e + \bar{\nu}_e$

- ▶ Produces extra ν_e 's
- Produced with pions in $p\gamma$ interactions
- ▶ Also come from photodisociation of heavy ions

But

- ▶ Neutrino energies are ~ 2-3 orders of magnitude less for $p\gamma$
- ▶ Neutrino flux from heavy ions is also suppressed

D. Biehl, et al. 1705.08909

X. Rodrigues, et al. 1711.02091

New Physics!

We need a stronger effect, so we look to new physics.

▶ NSI with ultra-light mediators $(m \ll 1 \text{ eV})$

A. Joshipura, S. Mohanty hep-ph/0310210

M. Bustamante, S. Agarwalla 1808.02042

Pseudo-dirac neutrinos

L. Wolfenstein Nucl. Phys. B186, 147 (1981)

S. Pakvasa, A. Joshipura, S. Mohanty 1209.5630

▶ Electrophilic dark matter decay

▶ Neutrino decay

New Physics!

We need a stronger effect, so we look to new physics.

▶ NSI with ultra-light mediators $(m \ll 1 \text{ eV})$

A. Joshipura, S. Mohanty hep-ph/0310210

M. Bustamante, S. Agarwalla 1808.02042

Pseudo-dirac neutrinos

L. Wolfenstein Nucl. Phys. B186, 147 (1981)

S. Pakvasa, A. Joshipura, S. Mohanty 1209.5630

Electrophilic dark matter decay

▶ Neutrino decay

Peter B. Denton (BNL)

New Physics!

We need a stronger effect, so we look to new physics.

▶ NSI with ultra-light mediators $(m \ll 1 \text{ eV})$ weak

A. Joshipura, S. Mohanty hep-ph/0310210

M. Bustamante, S. Agarwalla 1808.02042

weak

strong but CMB

L. Wolfenstein Nucl. Phys. B186, 147 (1981)

S. Pakvasa, A. Joshipura, S. Mohanty 1209.5630

► Electrophilic dark matter decay

• Neutrino decay strong, 3.4σ

Peter B. Denton (BNL)

Some Neutrinos Decay

Model recipe:

- 1. ν -decay depletes ν 's at low energy
- 2. Want fewer ν_{μ} at low energy
- 3. Let ν_2 and ν_3 decay
- 4. Keep ν_1 stable

*NO preferred at $\sim 3\sigma$ P. F. de Salas, et al. 1708.01186

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 15/20

Some Neutrinos Decay

Mr. Stark, I don't feel so good.... Model recipe:

- 1. ν -decay depletes ν 's at low energy
- 2. Want fewer ν_{μ} at low energy
- 3. Let ν_2 and ν_3 decay
- 4. Keep ν_1 stable

*NO preferred at $\sim 3\sigma$ P. F. de Salas, et al. 1708.01186

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 16/20

Track to Cascade Ratio (At Earth)

*the deviation from 1/2 as expected is due to SM corrections that are accounted for

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 17/20

PBD, I. Tamborra 1805.05950

S. Hannestad, G. Raffelt hep-ph/0509278

KamiokaNDE-II PRL 58 1490 (1987)

G. Pagliaroli, et al. 1506.02624

J. Berryman, A. de Gouvea, D. Hernandez 1411.0308

M. Gonzalez-Garcia and M. Maltoni 0802.3699

 ν_2, ν_3 decay leads to 16% reduction in $\bar{\nu}_e$ flux: SN1987A doesn't apply PBD, I. Tamborra 1805.05950

S. Hannestad, G. Raffelt hep-ph/0509278

KamiokaNDE-II PRL 58 1490 (1987)

G. Pagliaroli, et al. 1506.02624

J. Berryman, A. de Gouvea, D. Hernandez 1411.0308

M. Gonzalez-Garcia and M. Maltoni 0802.3699

 ν_2, ν_3 decay leads to 16% reduction in $\bar{\nu}_e$ flux: SN1987A doesn't apply

CMB constraints assume all flavors decay, < 3 decaying is allowed... PBD, I. Tamborra 1805.05950

- S. Hannestad, G. Raffelt hep-ph/0509278
 - KamiokaNDE-II PRL 58 1490 (1987)

G. Pagliaroli, et al. 1506.02624

J. Berryman, A. de Gouvea, D. Hernandez 1411.0308

M. Gonzalez-Garcia and M. Maltoni 0802.3699

N. Bell, E. Pierpaoli, K. Sigurdson astro-ph/0511410

 ν_2, ν_3 decay leads to 16% reduction in $\bar{\nu}_e$ flux: SN1987A doesn't apply

CMB constraints assume all flavors decay, < 3 decaying is allowed... and may be slightly preferred PBD, I. Tamborra 1805.05950

S. Hannestad, G. Raffelt hep-ph/0509278

KamiokaNDE-II PRL 58 1490 (1987)

G. Pagliaroli, et al. 1506.02624

J. Berryman, A. de Gouvea, D. Hernandez 1411.0308

M. Gonzalez-Garcia and M. Maltoni 0802.3699

N. Bell, E. Pierpaoli, K. Sigurdson astro-ph/0511410 M. Archidiacono, et al. 1404.5915

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 18/20

Deficit(?) of ν_{τ} Events

- ► IceCube can *sometimes* identify ν_{τ} CC
- ▶ Should have seen 2-3 events, seen none*

IC 1710.01191

Multiply with efficiency to find total sensitivity reduced by 59%

 $* \sim 1$ new net event may exist, new sensitivities will be higher

Peter B. Denton (BNL)

1805.05950

Pheno: May 6, 2019 19/20

The Message

- ▶ There seems to be some tension in IceCube's data
- ▶ Inconsistent with standard physics
 - Multiple sources don't help
 - Multi-zone type conspiracies could solve this
- ► DM is an option, not great
- \blacktriangleright Neutrino decay works, favored at 3.4 σ

The Message

- ▶ There seems to be some tension in IceCube's data
- ▶ Inconsistent with standard physics
 - Multiple sources don't help
 - Multi-zone type conspiracies could solve this
- ► DM is an option, not great
- \blacktriangleright Neutrino decay works, favored at 3.4 σ

It is possible to make strong particle physics statements in astrophysical environments

The Message

- ▶ There seems to be some tension in IceCube's data
- ▶ Inconsistent with standard physics
 - Multiple sources don't help
 - Multi-zone type conspiracies could solve this
- ▶ DM is an option, not great
- \blacktriangleright Neutrino decay works, favored at 3.4 σ

It is possible to make strong particle physics statements in astrophysical environments

Looking forward:

- ▶ Play close attention to ν_{τ} searches
- ► Anisotropy + flavor (DM)
- ▶ More flavor + energy dependent fits: BPL

Peter B. Denton (BNL)

1805.05950

Thank you!

Backups

- ▶ Neutrinos couple to a light/massless scalar ϕ : Majoron
- ▶ Secondaries?

- ▶ Neutrinos couple to a light/massless scalar ϕ : Majoron
- ► Secondaries?

Visible

- ▶ Lighter states regenerated
- Energetics depend strongly on absolute mass scale

Neutrinos couple to a light/massless scalar φ: Majoron
 Secondaries?

Visible

- Lighter states regenerated
- Energetics depend strongly on absolute mass scale

Invisible

- ▶ Right handed neutrinos
- \triangleright ν_L with much lower energies
- ▶ Unparticles, ...

Neutrinos couple to a light/massless scalar φ: Majoron
 Secondaries?

Visible

- Lighter states regenerated
- Energetics depend strongly on absolute mass scale

Invisible

- Right handed neutrinos
- \triangleright ν_L with much lower energies
- ▶ Unparticles, ...

To get *our* model:

- \triangleright ν_1 decay is kinematically inaccessible
- Coupling to ν_1 is much smaller
- Lifetime estimated by typical $E \simeq 100$ TeV and $z \simeq 1$: $\tau_2/m_2 \simeq \tau_3/m_3 \sim 10^2$ s/eV

Peter B. Denton (BNL)

Neutrino Decay Affects Flavor

The oscillation averaged probability is

$$\bar{P}(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i=1}^{3} |U_{\alpha i}|^{2} |U_{\beta i}|^{2} e^{-\Lambda_{i}}$$
$$\Lambda_{i} \equiv \frac{d_{H} f(z) m_{i}}{E_{\nu} \tau_{i}}$$
$$f(z) = \int_{0}^{z} \frac{dz'}{(1+z')^{2} \sqrt{(1+z')^{3} \Omega_{m} + \Omega_{\Lambda}}}$$

We take $\Lambda_2 = \Lambda_3$ for simplicity and $\Lambda_1 = 0$.

Peter B. Denton (BNL)

Pheno: May 6, 2019 24/20

IceCube's Tracks and Cascades

