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Baryon Asymmetbry of the Universe

o The observed BAU is often quoted in terms of
b&rvom te photon ratio

e =-2_B _ 604+ 0.08 x 10719

n,

o The prediction for this ratio from Big Bang
Nucleosynthesis (BBN) agrees well with the
observed value from Cosmic Microwave
Background Radiation (CMBR) measurements
(Planck, arXiv: 1502.018%9),
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baryon asymmetry from an initially baryons
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o Barvon Number (B) violation X — Y+ B

o C and CP viclakiown,

I[(X—-Y+B)#AI'(X > Y+ B)
['X—q,+q)+1(X = qgp+qg) #1(q, + q;) +1(gg + gr)

o Departure from thermal equilibrium,
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Baryogenesis

o The SM fails to satisfy Sakharov’s conditions: tnsufficient CP
violation in the quark sector and Higgs Mass is too large to
support a strong first order electrowealk phase transition
(Electroweak Baryogenesis).

o Additional CP? violation i lepton sector (not yet discovered)
may play a role through the mechanism of Leptogenesis
(Fulugida and Yanagida 19%6)

o Typically, seesaw models explaining neutrino mass and mixing
can also play role in creating a lepton asymmelry through
oubt-of-equilibrium CP violating decay of heavy particles,
which later gets converted into baryon asymmetry through
electroweak sphalerons.

o Leptogenesis F.'rovi,cie. a common framework ko explain
neutrine mass, mixing and baryon asymmetry of the Universe.
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Baryogenesis & Dark Matter

The observed BAU and DM abundance are of the same
order

Q= SQ,

Although this could be just a coincidence, it has
motivabted several skudies Ervihg) to relate their origins.

Asymmetric DM, WIMPY Baryogenesis etc are some of
the scenarios proposed so far.

While generic implementations of these scenarios
tightly relate BAU & DM abundances, there exists other
implementations too where the connections may be
loose.
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Scotogenic Model e

Extension of the SM bv 3 RHN & 1 Scalar
Doublel, odd under the a builk-in Z,
symmetry,

The lightest of the Z, odd particles, U EM
neutral is a DM candidate,

Scalar DM resembles tnert Doublet DM (hep-
ph/06031%%,0512090,0612275).

Lightest RHN DM (1710.03%24).

Neubrino Mass arises akb QMQ*LOOF level.,



Scotogenic Model
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Vanilla Leptogenesis in Scotogenic Model

The asymmetry freezes out ot T < M,

The lepton asymmetbry gets converted into

barvoms asvmmeﬁrj through electrowealk

sphalerons (Khiebnikov & Shaposhnikov'ss).
AR 28 nay

S 79 s

The same right handed wneutrinos also
generate light neutrine masses at one-looyp,
along with scalar dark matter qoing inside

the Loop‘.



Leptogenesis in Scotogenic Model

Smaller values of As requires larger Yukawa
for correct neubrino mass and vice versa.

Large Yukawa resulkts in more wash-outs., Small
Yukawa will produce small asymmetry,

For TeV scale RHN, one requires very small values
of /15 to sa&is‘fj neubtrine mass and barjom
asvmmeﬁrv requiremamﬁs‘

TeV scale leptogenesis is not possible for
hierarchal RHN, unless the Lightest KHN is heavier
than 10 TeV (1%¥04.09660),

Resonant leptogenesis can work (Pilafbsis 1997, B
Dev et al 2013)



TeV Leptogenesis from DM annihilation
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o Since the particle spectrum of the model
remains heavy, around 0(100) GeV or
more, their direct Frodu&%&om at the 14
TeV LHC remains plausible.

o The model can however be tested at rare
de&av experiments looking for the lepton
flavour violation.,

o The praspec&s ak the direct/indirect darlke
makber deteckion experimev\&s remaiin weals,
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We show here the Leptogenesis can be realised in minimal scotogenic model.
In doing so one has two Possibiti&ies
1. Taking Scalar Doublet as the Dark Matter (similar to Inert Doublet DM) and
2. Taking the lightest of the RHN to be as DM,

Taking the Scalar as Dark Matter the only channel for asymmetry is the Co-
annihilation,

But to qet sufficient asymmetry contribution we would require large Yukawa resulting
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In this case another channel opens up through the t-channel giving additional
channel for asymmetry,






