TeV Scale Leptogenesis from Annihilations via t-channel and Co-annihilations Processes

Based on with Debasish Borah, Sin Kyu Kang

Arnab Dasgupta

Seoul National University of Science and Technology

May 6, 2019

Outline

- o Introduction Dark Matter (DM)
- o Baryon Asymmetry of Universe (BAU)
- o Towards a Common Origin of DM and BAU
- Baryogenesis from DM annihilation and coannihilation in Scotogenic Model
- o Conclusion

Standard Model (SM) cannot explain the observed neutrino mass and mixing

- Standard Model (SM) cannot explain the observed neutrino mass and mixing
- SM does not have a dark matter candidate.

- Standard Model (SM) cannot explain the observed neutrino mass and mixing
- SM does not have a dark matter candidate.
- SM cannot explain the observed baryon asymmetry

Baryon Asymmetry of the Universe

Baryon Asymmetry of the Universe

The observed BAU is often quoted in terms of baryon to photon ratio

$$\eta_B = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} = 6.04 \pm 0.08 \times 10^{-10}$$

Baryon Asymmetry of the Universe

The observed BAU is often quoted in terms of baryon to photon ratio

$$\eta_B = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} = 6.04 \pm 0.08 \times 10^{-10}$$

The prediction for this ratio from Big Bang Nucleosynthesis (BBN) agrees well with the observed value from Cosmic Microwave Background Radiation (CMBR) measurements (Planck, arXiv: 1502.01589).

Three basic ingredients necessary to generate a net baryon asymmetry from an initially baryons symmetric Universe (Sakharov 1967):

Three basic ingredients necessary to generate a net baryon asymmetry from an initially baryons symmetric Universe (Sakharov 1967):

 $oldsymbol{o}$ Baryon Number (B) violation X o Y + B

Three basic ingredients necessary to generate a net baryon asymmetry from an initially baryons symmetric Universe (Sakharov 1967):

- o Baryon Number (B) violation $X \to Y + B$
- o C and CP violation.

Three basic ingredients necessary to generate a net baryon asymmetry from an initially baryons symmetric Universe (Sakharov 1967):

- o Baryon Number (B) violation $X \to Y + B$
- o C and CP violation.

$$\Gamma(X \to Y + B) \neq \Gamma(\overline{X} \to \overline{Y} + \overline{B})$$

$$\Gamma(X \to q_L + q_L) + \Gamma(X \to q_R + q_R) \neq \Gamma(\overline{q}_L + \overline{q}_L) + \Gamma(\overline{q}_R + \overline{q}_R)$$

Three basic ingredients necessary to generate a net baryon asymmetry from an initially baryons symmetric Universe (Sakharov 1967):

- o Baryon Number (B) violation $X \to Y + B$
- e C and CP violation.

$$\Gamma(X \to Y + B) \neq \Gamma(\overline{X} \to \overline{Y} + \overline{B})$$

$$\Gamma(X \to q_L + q_L) + \Gamma(X \to q_R + q_R) \neq \Gamma(\overline{q}_L + \overline{q}_L) + \Gamma(\overline{q}_R + \overline{q}_R)$$

o Departure from thermal equilibrium.

The SM fails to satisfy Sakharov's conditions: insufficient CP violation in the quark sector and Higgs Mass is too large to support a strong first order electroweak phase transition (Electroweak Baryogenesis).

- The SM fails to satisfy Sakharov's conditions: insufficient CP violation in the quark sector and Higgs Mass is too large to support a strong first order electroweak phase transition (Electroweak Baryogenesis).
- Additional CP violation in lepton sector (not yet discovered)
 may play a role through the mechanism of Leptogenesis
 (Fukugida and Yanagida 1986)

- The SM fails to satisfy Sakharov's conditions: insufficient CP violation in the quark sector and Higgs Mass is too large to support a strong first order electroweak phase transition (Electroweak Baryogenesis).
- Additional CP violation in lepton sector (not yet discovered)
 may play a role through the mechanism of Leptogenesis
 (Fukugida and Yanagida 1986)
- Typically, seesaw models explaining neutrino mass and mixing can also play role in creating a lepton asymmetry through out-of-equilibrium CP violating decay of heavy particles, which later gets converted into baryon asymmetry through electroweak sphalerons.

- The SM fails to satisfy Sakharov's conditions: insufficient CP violation in the quark sector and Higgs Mass is too large to support a strong first order electroweak phase transition (Electroweak Baryogenesis).
- Additional CP violation in lepton sector (not yet discovered)
 may play a role through the mechanism of Leptogenesis
 (Fukugida and Yanagida 1986)
- Typically, seesaw models explaining neutrino mass and mixing can also play role in creating a lepton asymmetry through out-of-equilibrium CP violating decay of heavy particles, which later gets converted into baryon asymmetry through electroweak sphalerons.
- Leptogenesis provide a common framework to explain neutrino mass, mixing and baryon asymmetry of the Universe.

Baryogenesis & Dark Malter

Baryogenesis & Dark Malter

The observed BAU and DM abundance are of the same order

 $\Omega_{DM} \approx 5\Omega_B$

Baryogenesis & Dark Maller

The observed BAU and DM abundance are of the same order

$$\Omega_{DM} \approx 5\Omega_B$$

 Although this could be just a coincidence, it has motivated several studies trying to relate their origins.

Baryogenesis & Dark Maller

 The observed BAU and DM abundance are of the same order

$$\Omega_{DM} \approx 5\Omega_B$$

- Although this could be just a coincidence, it has motivated several studies trying to relate their origins.
- Asymmetric DM, WIMPy Baryogenesis etc are some of the scenarios proposed so far.

Baryogenesis & Dark Maller

 The observed BAU and DM abundance are of the same order

$$\Omega_{DM} \approx 5\Omega_B$$

- Although this could be just a coincidence, it has motivated several studies trying to relate their origins.
- Asymmetric DM, WIMPy Baryogenesis etc are some of the scenarios proposed so far.
- While generic implementations of these scenarios tightly relate BAU & DM abundances, there exists other implementations too where the connections may be loose.

SCOLOGENIC MODEL E. Ma 2006

Extension of the SM by 3 RHN & 1 Scalar Doublet, odd under the a built-in Z_2 symmetry.

- Extension of the SM by 3 RHN $\stackrel{\text{\tiny \pm}}{=}$ 1 Scalar Doublet, odd under the a built-in Z_2 symmetry.
- The lightest of the Z_2 odd particles, if EM neutral is a DM candidate.

- Extension of the SM by 3 RHN & 1 Scalar Doublet, odd under the a built-in Z_2 symmetry.
- The lightest of the Z_2 odd particles, if EM neutral is a DM candidate.
- o Scalar DM resembles inert Doublet DM (hep-ph/0603188,0512090,0612275).

- Extension of the SM by 3 RHN & 1 Scalar Doublet, odd under the a built-in Z_2 symmetry.
- The lightest of the Z_2 odd particles, if EM neutral is a DM candidate.
- Scalar DM resembles inert Doublet DM (hepph/0603188,0512090,0612275).
- o Lightest RHN DM (1710.03824).

- Extension of the SM by 3 RHN $\stackrel{\text{\tiny \pm}}{=}$ 1 Scalar Doublet, odd under the a built-in Z_2 symmetry.
- The lightest of the Z_2 odd particles, if EM neutral is a DM candidate.
- Scalar DM resembles inert Doublet DM (hepph/0603188,0512090,0612275).
- o Lightest RHN DM (1710.03824).
- o Neutrino Mass arises at one-loop level.

$$V(\Phi_1, \Phi_2) = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi^{\dagger}\Phi|^2 + \left\{ \frac{\lambda_5}{2} (\Phi_1^{\dagger}\Phi_2) + h \cdot c \right\}$$

 $\mathcal{L} \supset \frac{1}{2} (M_N)_{ij} N_i N_j + (Y_{ij} \overline{L} \tilde{\Phi}_2 N_j + h \cdot c)$

$$\lambda_5$$
 Y_{ik}

$$m_h^2 = \lambda_1 v^2$$

$$m_{H^{\pm}}^2 = \mu_2^2 + \frac{1}{2} \lambda_3 v^2,$$

$$m_H^2 = \mu_2^2 + \frac{1}{2} (\lambda_3 + \lambda_4 + \lambda_5) v^2$$

$$m_A^2 = \mu_2^2 + \frac{1}{2} (\lambda_3 + \lambda_4 - \lambda_5) v^2$$

One loop neutrino mass:
$$(m_{\nu})_{ij} = \sum_{k} \frac{Y_{ik}Y_{jk}M_{k}}{16\pi^{2}} \left(\frac{m_{R}^{2}}{m_{R}^{2} - M_{k}^{2}} \ln \frac{m_{R}^{2}}{M_{k}^{2}} - \frac{m_{I}^{2}}{m_{I}^{2} - M_{k}^{2}} \ln \frac{m_{I}^{2}}{M_{k}^{2}} \right)$$

Which under the approximation $m_H^2 + m_A^2 \approx M_k^2$ boils down to

$$(m_{\nu})_{ij} \approx \sum_{k} \frac{\lambda_5 v^2}{32\pi^2} \frac{Y_{ik}Y_{jk}}{M_k} = \sum_{k} \frac{m_A^2 - m_H^2}{32\pi^2} \frac{Y_{ik}Y_{jk}}{M_k}$$

Now, from the first condition of Sakharov we should have a Box L violating coupling.

Now, from the first condition of Sakharov we should have a Bor L violating coupling.

Which in Scotogenic model is Yij Lip No

Now, from the first condition of Sakharov we should have a Box L violating coupling.

Which in Scotogenic model is Yij Life No

• The second condition is the need of cand CP violation

Now, from the first condition of Sakharov we should have a Box L violating coupling.

Which in Scotogenic model is Yij Lip Nj

• The second condition is the need of cand CP violation

In order to understand this we consider the Venilla leptogenesis Scenario in Scotogenic Model.

Detour to basic leptogenesis

O Now, from the first condition of Sakharov we should have a Box L violating coupling.

Which in Scotogenic model is Yij Lip No

• The second condition is the need of cand CP violation

In order to understand this we consider the Venilla leptogenesis Scenario in Scotogenic Model.

• In that N; -> Li & is the process which violates Lie

Nj X Li

Detour to basic leptogenesis

Now, from the first condition of Sakharov we should have a Box L violating coupling.

Which in Scotogenic model is Yij Lip Nj

• The second condition is the need of cand CP violation

In order to understand this we consider the Venilla leptogenesis Scenario in Scotogenic Model.

• In that N; > Li & is the process which violates Lie

But one may notice that the tree level process for particle and anti-particle are the same.

$$N_i \leftarrow \begin{cases} l_i \\ + \\ N_i \\ \end{cases} \begin{pmatrix} l_i \\ + \\ \end{pmatrix} \begin{pmatrix}$$

Fukugida & Yanagida '86

$$N_i \leftarrow \begin{cases} L_i \\ + N_i \end{cases} \begin{pmatrix} L_i \\ N_i \\ + \end{pmatrix} \begin{pmatrix} L_i \\ N_i \\ \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} \begin{pmatrix} L_i \\ P_2 \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} \begin{pmatrix} P_2 \\ P_2 \end{pmatrix}$$

Fukugida & Yanagida '86

(Lin & Segre 193)

Fukugida & Yanagida '86

$$N_i \leftarrow \begin{cases} L_i \\ + N_i \end{cases} \rightarrow \begin{cases} L_i \\ + N_i \end{cases} \rightarrow \begin{cases} N_i \end{cases} \rightarrow \begin{cases} N_i \\ + N_i \end{cases} \rightarrow \begin{cases} N_i \end{cases} \rightarrow \begin{cases} N_i \\ + N_i \end{cases} \rightarrow \begin{cases}$$

-) (Liu & Segre 193)

$$E = \frac{S}{F_{\text{total}}}$$

Fukugida & Yanagida '86

$$N_i \leftarrow \begin{cases} L_i \\ + N_i \end{cases} \begin{pmatrix} L_i \\ N_i \\ + N_i \end{pmatrix} \begin{pmatrix} L_i \\ N_i \\ + N_i \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \\ P_2 \end{pmatrix} \begin{pmatrix} P_2 \\ P_2$$

(Liu & Segre 193)

$$E = \frac{S}{Fotal}$$
 cp violation through interference

Fukugida & Yanagida '86

$$N_i \leftarrow \begin{cases} l_i \\ p_2 \end{cases} + \begin{cases} N_i \\ p_2 \end{cases} \begin{pmatrix} l_i \\ p_2 \end{pmatrix} \begin{pmatrix} l_i$$

(Lin & Segre 193)

E = S > CP violation through interference

Fotal > Total decay width

Fukugida & Yanagida '86

$$N_i \leftarrow \begin{cases} l_i \\ + N_i \end{cases} \begin{pmatrix} l_i \\ + N_i \end{pmatrix} \begin{pmatrix} l_i$$

(Lin & Segre 193)

Fukugida & Yanagida '86

$$N_i \leftarrow \begin{cases} L_i \\ \phi_2 \end{cases} + N_i \rightarrow \begin{cases} N_i \\ \phi_2 \end{cases} + (N_i \\ \phi_2$$

(Lin & Segre 193)

$$E = \frac{S}{Fotal}$$
 CP violation through interference
Fotal Total decay width

Comes from the imaginery part of the loop.

Fukugida & Yanagida '81

$$N_i \leftarrow \begin{cases} L_i \\ \phi_2 \end{cases} + N_i \rightarrow \begin{cases} N_i \\ \phi_2 \end{cases} + (N_i \\ \phi$$

(Lin & Segre 193)

Comes from the imaginery part of the loop.

In this scenario atteast 2 Nis are needed to get the cp violation from the interference term.

Vanilla Leptogenesis in Scotogenic Model

- σ The asymmetry freezes out at $T\ll M_i$
- The lepton asymmetry gets converted into baryons asymmetry through electroweak sphalerons (Khlebnikov & Shaposhnikov'88).

$$\frac{n_{\Delta B}}{s} = -\frac{28}{79} \frac{n_{\Delta L}}{s}$$

The same right handed neutrinos also generate light neutrino masses at one-loop, along with scalar dark matter going inside the loop.

Leptogenesis in Scotogenic Model

- o Smaller values of λ_5 requires larger Yukawa for correct neutrino mass and vice versa.
- Large Yukawa results in more wash-outs. Small
 Yukawa will produce small asymmetry.
- For TeV scale RHN, one requires very small values of λ_5 to satisfy neutrino mass and baryon asymmetry requirements.
- TeV scale leptogenesis is not possible for hierarchal RHN, unless the lightest RHN is heavier than 10 TeV (1804.09660).
- Resonant leptogenesis can work (Pilaftsis 1997, B
 Dev et al 2013)

TeV Leptogenesis from DM annihilation

In, order to generate leptonic asymmetry around TeV scale we would need the following L violating processes

t-channel (Annihilation)

s-channel (co-annihilation)

O Now, if we consider scalars as Dark Matter the t-channel process do not produce asymmetry.

And to have a successful leptogenesis one would require the Yukawa's to be of O(1)

=) The λ_5 to be of order ~ 10^{-10}

And to have a successful leptogenesis one would require the Yukawa's to be of O(1)

=) The λ_5 to be of order ~ 10^{-10}

10 Now, this will lead to the mass difference of My-My_ - 10 eV

- And to have a successful leptogenesis one would require the Yukawa's to be of O(1)
 - =) The λ_5 to be of order ~ 10^{-10}
- 10 Now, this will lead to the mass difference of My-My_ 10 eV
- This opens up the channel for inelastic scattering in Direct Detection through Z
 - M_{R} M_{Z} M_{Z
- =) This gives a real stringent bound on Direct Detection.

Another possibility is by choosing the lightest of the RHN to be the Dark Matter.

- Another possibility is by choosing the lightest of the RHN to be the Dark Matter.
- In that case both the t-channel and the s-channel opens up.

- Another possibility is by choosing the lightest of the RHN to be the Dark Matter.
- In that case both the t-channel and the s-channel opens up.
 - Now, the only annihilation channel for freeze-out is the t-channel

- Another possibility is by choosing the lightest of the RHN to be the Dark Matter.
- In that case both the t-channel and the s-channel opens up.
 - Now, the only annihilation channel for freeze-out is the t-channel

In order to assist the freeze-out we would need the mass difference between My-MN, to be very small along with order 1 (YVI) Yukawa.

- Another possibility is by choosing the lightest of the RHN to be the Dark Matter.
- In that case both the t-channel and the s-channel opens up.
 - Now, the only annihilation channel for freeze-out is the t-channel

- In order to assist the freeze-out we would need the mass difference between My-MN, to be very small along with order 1 (YVI) Yukawa.
- In this scenario one can reach as low as My 500 GeV

Details of Leptogenesis

For t-channel to contribute one would require atleast one of the RHN to be lightest making it the Dark Matter candidate.

1 For asymmetry arising from s-channel the required diagrams are

$$\frac{E_{\gamma L} = 1}{16\pi} \left[2(1+\sqrt{r_i})^2 \gamma_i \gamma_j + \frac{1}{2} (1+2\sqrt{r_i} + \gamma_i - \gamma_j) (1+2\sqrt{r_i} + \gamma_i + \gamma_j + 2\gamma_i \gamma_j) \right]$$

=) Showing the contribution from bubble diagram.

@ And then the assymetry coming from (t-channel)

The Bollzmann Equations

$$\begin{split} \frac{dY_{DM}}{dz} &= -\frac{2zs}{H(M_{DM})} \langle \sigma v \rangle_{DMDM \to SMSM} \Big(Y_{DM}^2 - (Y^{eq})_{DM}^2 \Big) \\ \frac{dY_{\Delta L}}{dz} &= \frac{2zs}{H(M_{N_3})} \left[\sum_i \epsilon_{N_i} (Y_{N_i}^2 - (Y_{N_i}^{eq})^2) \langle \Gamma_{N_i \to L_a \eta} \rangle - Y_\Delta r_i \langle \Gamma_{N_i \to L_a \eta} \rangle \right. \\ & + \epsilon_{\eta \eta} \langle \sigma v \rangle_{\eta \eta \to LL} \Big(Y_{\eta}^2 - (Y_{\eta}^{eq})^2 \Big) - Y_{\Delta L} Y_l^{eq} r_{\eta}^2 \langle \sigma v \rangle_{\eta \eta \to LL} \\ & + \sum_i \epsilon_{N_i \eta} \langle \sigma v \rangle_{\eta N_i \to SLSM} \Big(Y_{\eta} Y_{N_i} - Y_{\eta}^{eq} Y_{N_i}^{eq} \Big) - \frac{1}{2} Y_{\Delta L} Y_l^{eq} r_{N_i} r_{\eta} \langle \sigma v \rangle_{\eta N_i \to SML} \\ & - Y_{\Delta L} Y_{\eta}^{eq} \langle \sigma v \rangle_{\eta L \to \eta L}^{wo} - Y_{\Delta L} r_{\eta} \langle \Gamma_{\eta \to N_1 l} \rangle \Big] \end{split}$$

$$H = \sqrt{\frac{4\pi^{3}g_{*}}{45}} \frac{M_{DM}^{2}}{M_{Pl}}, \quad s = g_{*} \frac{2\pi^{2}}{45} \left(\frac{M_{DM}}{z}\right)^{3} \qquad r_{j} = \frac{Y_{j}^{eq}}{Y_{l}^{eq}} \qquad \langle \Gamma_{j\to X} \rangle = \frac{K_{1}(M_{j}/T)}{K_{2}(M_{j}/T)} \Gamma_{j\to X}$$

CESULES

y as Dark Matter

N, as the Dark Matter

	BP1 (M DM)	BPZ (N. DM)
My	850 GeV	500 GeV
MNI	895 GeV	507.1 GeV
M _N ₂	5 TeV	5 TeV
M _{N3}	6 TeV	6 TeV
>,	0.253	0.253
> 3	0-5	0.5
74	-0.5	0.3
75	3×10-10	1×10-10
λ ₂	1-0	-O

Yukawa Structure and LFV

For y as Dark Matter

$$\begin{pmatrix} 9.9 \times 10^{-2} & -6.036 \times 10^{-2} & 3.77 \times 10^{-2} \\ 2.047 \times 10^{-1} & 2.12 \times 10^{-1} & -2.29 \times 10^{-1} \\ 1.41 \times 10^{-1} & 6.028 \times 10^{-1} & 6.837 \times 10^{-1} \end{pmatrix}$$

The Yukawa's are obtained by Casas-Ibarra parametrization.

$$\frac{\Gamma(M\to eY)}{\Gamma(M\to eY)_{expt}} = 0.35$$

$$\frac{P(M\rightarrow eY)}{P(M\rightarrow eY)expt.} = 0.74$$

arXiv:1312.2840,1412.2545

CESULES

1 In order to see the individual contributions of asymmetry sources

Testability

TESCADILLE

Since the particle spectrum of the model remains heavy, around 0(100) GeV or more, their direct production at the 14 TeV LHC remains plausible.

TESCADILLE

- Since the particle spectrum of the model remains heavy, around 0(100) GeV or more, their direct production at the 14 TeV LHC remains plausible.
- The model can however be tested at rare decay experiments looking for the lepton flavour violation.

Testability

- Since the particle spectrum of the model remains heavy, around 0(100) GeV or more, their direct production at the 14 TeV LHC remains plausible.
- The model can however be tested at rare decay experiments looking for the lepton flavour violation.
- The prospects at the direct/indirect dark matter detection experiments remain weak.

Scenarios relating DM and baryon abundance are more constrained than individual DM or baryogenesis models and have implications in a wide range of experiments starting from particle physics, cosmology & astrophysics.

- Scenarios relating DM and baryon abundance are more constrained than individual DM or baryogenesis models and have implications in a wide range of experiments starting from particle physics, cosmology & astrophysics.
- · We show here the Leptogenesis can be realised in minimal scotogenic model.

- Scenarios relating DM and baryon abundance are more constrained than individual DM or baryogenesis models and have implications in a wide range of experiments starting from particle physics, cosmology & astrophysics.
- · We show here the Leptogenesis can be realised in minimal scotogenic model.
- o In doing so one has two possibilities

- Scenarios relating DM and baryon abundance are more constrained than individual DM or baryogenesis models and have implications in a wide range of experiments starting from particle physics, cosmology & astrophysics.
- · We show here the Leptogenesis can be realised in minimal scotogenic model.
- . In doing so one has two possibilities
 - 1. Taking Scalar Doublet as the Dark Matter (similar to Inert Doublet DM) and

- Scenarios relating DM and baryon abundance are more constrained than individual DM or baryogenesis models and have implications in a wide range of experiments starting from particle physics, cosmology & astrophysics.
- · We show here the Leptogenesis can be realised in minimal scotogenic model.
- . In doing so one has two possibilities
 - 1. Taking Scalar Doublet as the Dark Matter (similar to Inert Doublet DM) and
 - 2. Taking the lightest of the RHN to be as DM.

- Scenarios relating DM and baryon abundance are more constrained than individual DM or baryogenesis models and have implications in a wide range of experiments starting from particle physics, cosmology & astrophysics.
- · We show here the Leptogenesis can be realised in minimal scotogenic model.
- . In doing so one has two possibilities
 - 1. Taking Scalar Doublet as the Dark Matter (similar to Inert Doublet DM) and
 - 2. Taking the lightest of the RHN to be as DM.
- Taking the Scalar as Dark Matter the only channel for asymmetry is the Coannihilation.

- Scenarios relating DM and baryon abundance are more constrained than individual DM or baryogenesis models and have implications in a wide range of experiments starting from particle physics, cosmology & astrophysics.
- · We show here the Leptogenesis can be realised in minimal scotogenic model.
- . In doing so one has two possibilities
 - 1. Taking Scalar Doublet as the Dark Matter (similar to Inert Doublet DM) and
 - 2. Taking the lightest of the RHN to be as DM.
- Taking the Scalar as Dark Matter the only channel for asymmetry is the Coannihilation.
- But to get sufficient asymmetry contribution we would require large Yukawa resulting in vanishing mass difference between Scalar and Pseudo-Scalar Dark matter opening up the inelastic scattering at Direct Detection through Z.

- Scenarios relating DM and baryon abundance are more constrained than individual DM or baryogenesis models and have implications in a wide range of experiments starting from particle physics, cosmology & astrophysics.
- · We show here the Leptogenesis can be realised in minimal scotogenic model.
- . In doing so one has two possibilities
 - 1. Taking Scalar Doublet as the Dark Matter (similar to Inert Doublet DM) and
 - 2. Taking the lightest of the RHN to be as DM.
- Taking the Scalar as Dark Matter the only channel for asymmetry is the Coannihilation.
- But to get sufficient asymmetry contribution we would require large Yukawa resulting in vanishing mass difference between Scalar and Pseudo-Scalar Dark matter opening up the inelastic scattering at Direct Detection through Z.
- In that case if we consider the lightest of the RHN (N,) to be the Dark Matter we can achieve the asymmetry for mass of the N as low as 500 GeV.

- Scenarios relating DM and baryon abundance are more constrained than individual DM or baryogenesis models and have implications in a wide range of experiments starting from particle physics, cosmology & astrophysics.
- . We show here the Leptogenesis can be realised in minimal scotogenic model.
- . In doing so one has two possibilities
 - 1. Taking Scalar Doublet as the Dark Matter (similar to Inert Doublet DM) and
 - 2. Taking the lightest of the RHN to be as DM.
- Taking the Scalar as Dark Matter the only channel for asymmetry is the Coannihilation.
- But to get sufficient asymmetry contribution we would require large Yukawa resulting in vanishing mass difference between Scalar and Pseudo-Scalar Dark matter opening up the inelastic scattering at Direct Detection through Z.
- In that case if we consider the lightest of the RHN (N,) to be the Dark Matter we can achieve the asymmetry for mass of the N as low as 500 GeV.
- In this case another channel opens up through the t-channel giving additional channel for asymmetry.

Thank You