ePump: a fast tool to update/analyze PDFs

Zhite Yu Michigan State University

ePump

(error PDF updating method package)

Who needs it ?

- Experimentalists: explore effects of new data
- Phenomenologists: inspect impacts of pseudodata

Why ePump?

2

- Precision era: High-Luminosity LHC
- Theory Uncertainties: scale uncertainty + PDF uncertainty

	$\sigma_{W^+}^{\mathrm{fid}}$ [pb]	$\sigma^{\mathrm{fid}}_{W^-}[\mathrm{pb}]$	$\sigma_Z^{ m fid}[m pb]$
PDF (CT14)	2203^{+62}_{-64}	1379_{-42}^{+34}	356_{-10}^{+8}
$lpha_S$	± 17	$^{+13}_{-11}$	$^{+3}_{-2}$
μ_R, μ_F scales	$^{+18}_{-11}$	$^{+11}_{-8}$	± 1
Data	2266 ± 53	1401 ± 33	374.5 ± 8.6
	PDF (CT14) α_S μ_R, μ_F scales Data	$\sigma_{W^+}^{\text{fid}}$ [pb]PDF (CT14) 2203^{+62}_{-64} α_S ± 17 μ_R, μ_F scales $^{+18}_{-11}$ Data 2266 ± 53	$\sigma_{W^+}^{\text{fid}}$ [pb] $\sigma_{W^-}^{\text{fid}}$ [pb]PDF (CT14) 2203_{-64}^{+62} 1379_{-42}^{+34} α_S ± 17 $^{+13}_{-11}$ μ_R, μ_F scales $^{+18}_{-11}$ $^{+11}_{-8}$ Data 2266 ± 53 1401 ± 33

PDF uncertainties dominate the theory uncertainties!

How can we reduce the PDF uncertainties?

- Global fit usually takes days to perform analysis.
- ePump arises as a convenient tool to analyze PDFs approximately.
- ePump only takes **1 sec** to run.

ePump: simple approximation

- χ^2 : quadratic
- Observables X: linear approximation

$$\Delta \chi^{2}(\mathbf{z})_{\text{new}} = T^{2} \sum_{i=1}^{N} z_{i}^{2} + \sum_{\alpha,\beta=1}^{N_{X}} (X_{\alpha}(\mathbf{z}) - X_{\alpha}^{E}) C_{\alpha\beta}^{-1}(X_{\beta}(\mathbf{z}) - X_{\beta}^{E})$$

$$\Delta \chi^{2} \text{ for the original data:} \qquad \chi^{2} \text{ for the new data set:} \\ \text{quadratic approximation} \qquad \chi^{2} \text{ for the new data set:} \\ \text{Take linear expansion for } X(z).$$

ePump calculates the new minimum and updates the PDFs and observables X_{α} .

Simple approximation works well

- CT14HERA2mJ: 2882 data points
- Jets: 405 data points

4

CT14mJEall: CT14HERA2mJ +all jets → reproduce CT14HERA2

Update observables

ePump can update observables at the same time of updating PDFs

• Update $\sigma(gg \rightarrow h)$ at the LHC

5

■ Jet data reduce the $\sigma(gg \rightarrow h)$ uncertainty by ~ 20%.

Impacts of 4 jet data sets in CT14HERA2

6

Impacts of 4 jet data sets in CT14HERA2

- Jet data are exclusively sensitive to gluon PDF
- $t\bar{t}$ data at LHC also depends on gluon PDF a lot

What impacts does tt data have on gluon PDF?

How does tt compare to jet data?

- $t\bar{t}$ only has small effects on CT14HERA2 PDFs.
- Compared to jets, tt
 changes the central PDF in a similar way, but not reduces the error band as much.

Improvement of $\sigma(gg \rightarrow h)$ by $t\bar{t}$ data 10 ePump For $\sigma(gg \rightarrow h)$ at 13 TeV at LHC 42.7 ± 1.5 pb Jets without jet data CT14HERA2mJ 42.1 ± 2.0 pb CMS 8TeV tt 42.97 ± 1.70 pb $t\bar{t}$ gives larger gluon PDF $t\bar{t}$ gives larger gluon central value PDF uncertainty

What if $t\bar{t}$ had the same # data points ?

Compared to jet data

- *tī* data has similar impacts on gluon PDF central values
- But has less power of reducing gluon PDF errors

Reason: $t\bar{t}$ has much **fewer** production events than jets.

Roughly,

11

More data points Increase WEIGHT

Weight of $t\bar{t} = \frac{\# \text{ CMS7 } jet \text{ data points}}{\# \text{ CMS8 } y_{tt} \text{ data points}} = \frac{133}{10} \approx 13$

Suppose higher integrated luminosity

12

Conclusion and **Prospects**

- NOTE: ePump is not meant to replace global fit.
- But it's a convenient tool to QUICKLY analyze the effects of new/old data, and also pseudo-data!
- In the stage of high-luminosity LHC, ePump will certainly play an important role in studying PDFs.