W + jet production at NLO QCD and electroweak accuracy matched to Parton Shower

Jia Zhou

Amherst Center for Fundamental Interactions, Department of Physics, University of Massachussetts Amherst, MA 01003, USA

May 6, 2019

PHENO 2019

6 – 8 May 2019 @ University of Pittsburgh

In collaboration with

C.M.C.Calame, G.Montagna, O.Nicrosini, F.Piccinini — INFN Sezione di Pavia M.Chiesa — Julius-Maximilians-Universität Würzburg F.Tramontano — INFN Sezione di Napoli

Outline

Matching to Parton Shower
Strategy
Phenomenological results at the LHC

W+jet@NLO+PS

3

イロト イヨト イヨト イヨト

Outline

POWHEG + MiNLO method
The POWHEG method
Treatment of Resasonance in VRES
MiNLO method

Matching to Parton Shower Strategy Phenomenological results at the LHC

3

・ロト ・回ト ・ヨト ・ヨト

Implementation in POWHEG-BOX-RES

- POWHEG-BOX-RES generator: a resonance-aware implementation of the POWHEG algorithm \Rightarrow improve the treatment of processes with real radiation in the presence of decaying resonances
 - ▶ e.g., Wj: improves prediction around W-resonance

Precision Measurement of the *W*-Boson Mass:

Theoretical Contributions and Uncertainties

C. Carloni Calame et al. Phys.Rev. D96 (2017) no.9, 093005

	Templates	Pseudodata	M_W shifts (MeV)
1	LO	POWHEG(QCD) NLO	56.0 ± 1.0
2	LO	POWHEG(QCD)+PYTHIA(QCD)	74.4 ± 2.0
3	\mathbf{LO}	HORACE(EW) NLO	-94.0 ± 1.0
4	LO	HORACE (EW, QEDPS)	-88.0 ± 1.0
5	LO	POWHEG(QCD,EW) NLO	$\textbf{-14.0}\pm1.0$
6	\mathbf{LO}	POWHEG(QCD,EW) two-rad+PYTHIA(QCD)+PHOTOS	-5.6 ± 1.0

Table 7. W mass shift (in MeV) induced by different sets of perturbative corrections and evaluated with templates computed at LO, at the LHC 14 TeV for $\mu^+\nu$ production.

W + 1 jet NLO QCD + EW using POWHEG + MiNLO

- $\bullet\,$ Full set of NLO QCD + electroweak corrections to $W\,+\,1$ jet
 - NLO QCD $(\mathcal{O}(\alpha^2 \alpha_s^2)) + \text{EW}(\mathcal{O}(\alpha^3 \alpha_s))$ for Wj
 - **2** NLO QCD $(\mathcal{O}(\alpha^3 \alpha_s))$ for $W\gamma$
 - **③** Photon-induced & mixed interference contributions $(\mathcal{O}(\alpha^3 \alpha_s))$
- Relevant calculations are implemented in the RES version of POWHEG-BOX using POWHEG + MiNLO approach
 - Inclusion of contributions of electroweak nature and treatment of reasonances developed in POWHEG-RES: a step further w.r.t. QCD NLO+PS result
 - **2** Use of MiNLO (Multi-scale improved NLO) enables the predictions for inclusive W production at finite transverse momentum (small p_T cut \approx inclusive result)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへの

Outline

Matching to Parton Shower Strategy Phenomenological results at the LHC

W+jet@NLO+PS

3

イロト イヨト イヨト イヨト

Master Formula and Algorithm

• POWHEG: POsitive Weight Hardest Emission Generator

P.Nason (2004); S.Frixione et al. (2007); S.Alioli et al. (2010)

POWHEG cross section with hardest event generation

$$d\sigma = \sum_{f_b} \bar{B}^{f_b} \left(\mathbf{\Phi}_n \right) d\mathbf{\Phi}_n \left\{ \Delta^{f_b} \left(\mathbf{\Phi}_n, p_T^{\min} \right) + \sum_{\alpha_r \in \{\alpha_r | f_b\}} \frac{\left[d\Phi_{\mathrm{rad}} \theta \left(k_T - p_T^{\min} \right) \Delta^{f_b} \left(\mathbf{\Phi}_n, k_T \right) R \left(\mathbf{\Phi}_{n+1} \right) \right]_{\alpha_r}^{\bar{\mathbf{\Phi}}_n^{\alpha_r} = \mathbf{\Phi}_n}}{B^{f_b} \left(\mathbf{\Phi}_n \right)} \right\}$$

Master Formula and Algorithm

▶ Cross section at NLO accuracy: $\bar{B}^{f_b}(\mathbf{\Phi}_n)$

$$\begin{split} \bar{B}^{f_b}\left(\boldsymbol{\Phi}_n\right) &= \left[B\left(\boldsymbol{\Phi}_n\right) + V\left(\boldsymbol{\Phi}_n\right)\right]_{f_b} \\ &+ \sum_{\alpha_r \in \{\alpha_r \mid f_b\}} \int \left[d\Phi_{\mathrm{rad}}\left\{R\left(\boldsymbol{\Phi}_{n+1}\right) - C\left(\boldsymbol{\Phi}_{n+1}\right)\right\}\right]_{\alpha_r}^{\bar{\boldsymbol{\Phi}}_n^{\alpha_r} = \boldsymbol{\Phi}_n} \\ &+ \sum_{\alpha_{\oplus} \in \{\alpha_{\oplus} \mid f_b\}} \int \frac{dz}{z} G_{\oplus}^{\alpha_{\oplus}}\left(\boldsymbol{\Phi}_{n,\oplus}\right) \\ &+ \sum_{\alpha_{\ominus} \in \{\alpha_{\ominus} \mid f_b\}} \int \frac{dz}{z} G_{\ominus}^{\alpha_{\ominus}}\left(\boldsymbol{\Phi}_{n,\ominus}\right) \end{split}$$

- $[B(\mathbf{\Phi}_n) + V(\mathbf{\Phi}_n)]_{f_b}$: LO + virtual & integrated ct
- $R(\mathbf{\Phi}_{n+1}) C(\mathbf{\Phi}_{n+1})$: real contribution ct
- $-G_{\oplus}^{\alpha_{\oplus}}(\Phi_{n,\oplus}), G_{\ominus}^{\alpha_{\ominus}}(\Phi_{n,\ominus})$: collinear remnants finite leftover after adding PDF ct for IS collinear singularities

J.Z. (UMass Amherst)

W+jet@NLO+PS

May 6, 2019 8 / 30

イロト イヨト イヨト

Master Formula and Algorithm

▶ Modified Sudakov form factor: $\Delta^{f_b}(\mathbf{\Phi}_n, p_T)$

$$\Delta^{f_b}\left(\mathbf{\Phi}_n, p_T\right) = \exp\left\{\sum_{\alpha_r \in \{\alpha_r | f_b\}} \int \frac{\left[d\Phi_{\mathrm{rad}}\theta\left(k_T\left(\mathbf{\Phi}_{n+1}\right) - p_T\right)R\left(\mathbf{\Phi}_{n+1}\right)\right]_{\alpha_r}^{\bar{\mathbf{\Phi}}_n^{\alpha_r} = \mathbf{\Phi}_n}}{B^{f_b}\left(\mathbf{\Phi}_n\right)}\right\}$$

 $-k_T (\Phi_{n+1})$: a function in real phase space and is equal to the transverse momentum of the emitted parton in soft/collinear limit.

• Algorithm for generation of radiation

- i The probability of generating the hardest radiation $\propto d\Delta^{f_b}$
- ii Each singular region has a Sudakov form factor $\Delta^{f_b} = \prod_{\alpha_r \in \{\alpha_r \mid f_b\}} \Delta^{f_b}_{\alpha_r}$
- iii Use the so called "highest bid method" to generate one p_T for each singular region and then pick the largest one
- iv Following the hardest radiation, subsequent radiations are simulated via PS, and are vetoed if harder than the POWHEG generated radiation

W+jet@NLO+PS

May 6, 2019 9 / 30

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

Problems to be addressed

- Up-to-date framework POWHEG-BOX-RES
 - ▶ The subtraction method and resonances
 - \triangleright NLO + PS and resonances
- I subtraction method and resonances

Catani-Seymour subtraction scheme

T.Ježo and P.Nason (2015)

$$\begin{split} \bar{k}_b &= k_b + k_g - k_{\oplus} \frac{\left(k_b + k_g\right)^2}{2\left(k_b + k_g\right) \cdot k_{\oplus}}, \ \bar{k}_b^2 = 0\\ \bar{k}_{\oplus} &= k_{\oplus} - k_{\oplus} \frac{\left(k_b + k_g\right)^2}{2\left(k_b + k_g\right) \cdot k_{\oplus}}\\ \Delta k_t &= k_{\oplus} \frac{\left(k_b + k_g\right)^2}{2\left(k_b + k_g\right) \cdot k_{\oplus}} \approx \frac{m_{bg}^2}{E_{bg}} \end{split}$$

May 6, 2019

10 / 30

Problems to be addressed

II NLO + PS and resonances

Radiation is generated according to a Sudakov form factor

$$\Delta\left(p_{T}^{2}\right) = \exp\left[-\int d\Phi_{\mathrm{rad}}\theta\left(k_{T}\left(\Phi_{\mathrm{rad}}\right) - p_{T}\right)\frac{R\left(\Phi_{n+1}\right)}{B\left(\Phi_{n}\right)}\right]$$

- Mapping of the real phase space $\Phi_{n+1} \mapsto \Phi_{rad} \otimes \Phi_n$ is the same as in NLO subtraction precedure, and it will not preserve reasonance masses, so that R and B in general are not on the reasonance peak at the same time. E.g., R is on reasonance peak while B is not $(R/B \to \infty) \Rightarrow$ badly violates collinear approximation.
- A further problem arises when interfacing NLO + PS caculation to a shower generator to generate next-to-hardest radiation. Radiation should have a reasonance assignment to instruct SMC to preserve the mass of the reasonances.

Reasonance-aware implementation in VRES generator

• New phase space mappings have been introduced to preserve the invariant masses of reasonances, and the corresponding soft/collinear subtraction terms have been modified accordingly.

• The hardest radiation is selected for each one of the resonances of the underlying Born (UB) process.

MiNLO $method^1$

- Multi-scale improved NLO
- Originally developed as an algorithm for the optimal choice of scales in NLO QCD calculations (massive colorless systems +

n-jets; MiNLO formulation on backup slides)

Scale choice in QCD processes

$$P = \frac{d\sigma}{d\Phi} = \alpha_s^N (\mu_R) B + \alpha_s^{N+1} (\mu_R) \left[V + N \ b_0 \log \frac{\mu_R^2}{Q^2} B \right] + \alpha_s^{N+1} (\mu_R) R,$$

$$\frac{\partial P}{\partial \log \mu_R} = -N \ b_0 \alpha_s^{N+1} (\mu_R) B + N \ b_0 \alpha_s^{N+1} (\mu_R) B + \mathcal{O} \left(\alpha_s^{N+2} \right)$$

$$\alpha_s^N (\mu_R) B \Rightarrow \prod_{i=1}^N \alpha_s (q_i) B; \quad \mu_R \to \mu_R \doteq \left[\prod_{i=1}^N q_i \right]^{1/N}$$

• As a byproduct, it provides the suppression for the QCD singularities of the LO process preserving the NLO accuracy of the calculation

¹K.Hamilton *et al.*, JHEP **1210** (2012), JHEP **1305** (2013) \rightarrow (\equiv) (\equiv)

J.Z. (UMass Amherst)

W+jet@NLO+PS

May 6, 2019 13 / 30

Wj production using MiNLO: remark

• MiNLO is mandatory for Wj UB

• For $W\gamma$ UB MiNLO is used in order to improve the α_s scale choice in the QCD corrections

• The singularities of $W\gamma$ UB are removed by small generation cuts

$$p_{T,\gamma}^{\min} \ll p_{T,\gamma}^{\exp.\mathrm{cut}}, \quad \Delta R^{\min}(\gamma, l) \ll \Delta R^{\exp.\mathrm{cut}}(\gamma, l)$$

Outline

What are we aiming at?

POWHEG + MiNLO method
The POWHEG method
Treatment of Resasonance in VRES
MiNLO method

Matching to Parton Shower Strategy Phenomenological results at the LHC

э.

イロト イヨト イヨト イヨト

Strategy

Strategy for the PS matching

POWHEG-BOX-RES generates up to one real radiation for each of reasonance structures of UB under consideration

- Two possible reasonances for W + 1 jet process: W (FS) and initial states + 1 jet (IS)
 - 1. $pp \rightarrow W\gamma$ without radiation;

QCD & QED PS: rad_ptsqmin = 0.8 GeV^2

2. $pp \rightarrow W\gamma$ + one IS QCD radiation;

QCD & QED PS: relative p_T of IS QCD radiation

3. $pp \rightarrow Wj$ without radiation;

IS PS: rad_ptsqmin = 0.8 GeV²; FS QED PS: rad_ptsqmin_em = 10⁻⁶ GeV²

4. $pp \rightarrow Wj + \text{one IS QCD or QED radiation};$

IS PS: relative p_T of IS radiation; FS QED PS: rad_ptsqmin_em = 10^{-6} GeV²

5. $pp \rightarrow Wj + \text{one FS QED radiation};$

IS PS: rad_ptsqmin = 0.8 GeV²; FS QED PS: relative p_T of FS QED radiation

6. $pp \rightarrow Wj + \text{one IS QCD or QED radiation} + \text{one FS QED}$ radiation.

IS PS: relative p_T of IS radiation; FS QED PS: relative p_T of FS QED radiation

W+jet@NLO+PS

May 6, 2019 16 / 30

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Strategy for the PS matching

- If the photon-induced processes are included:
 - 1. New lepton- and (some) photon-induced UB with W exchaged at t-channel \Rightarrow only resonance structure is the hard process itself.
 - Choice: POWHEG generates up to one radiation \Rightarrow as in the case of W γ UB

• Interface with PYTHIA8.2

- 4 周 ト 4 ヨ ト 4 ヨ ト

Showered results compared with $W\gamma$ V2

- Perform a tuned comparison between Wj VRES and $W\gamma$ V2 (no EW corrections, photon-induced and mixed interference contributions in Wj VRES)
- W production accompanying at least one jet at $\sqrt{S} = 13$ TeV LHC² (in order to include photon PDF, we use NNPDF31_nlo_as_0118_luxqed)
 - 1. Muon selection criteria:

$$p_{T,\mu} > 25 \text{ GeV}, \ |\eta_{\mu}| < 2.4$$

2. Jet selection criteria:

$$p_{T,j} > 30 \text{ GeV}, |y_j| < 2.4; Anti - k_T, R = 0.4$$

3. Spatial separation between moun and jet:

 $\Delta R > 0.4$

4. Invariant transeverse mass cut:

$$\begin{split} m_T &> 50 \text{ GeV}, \\ m_T \left(\mu, \vec{p}_T^{\text{miss}} \right) \equiv \sqrt{2 p_T^{\mu} E_T^{\text{miss}} \left(1 - \cos \Delta \phi \right)} \\ \cos \Delta \phi &= \vec{p}_T^{\ \mu} \cdot \vec{p}_T^{\text{miss}} / |\vec{p}_T^{\ \mu}| |\vec{p}_T^{\text{miss}}| \end{split}$$

²Acceptance cuts are adopted from A.M.Sirunyan *et al.* (CMS Collaboration), Phys. Rev. **D** 96, 072005 (2017)

J.Z. (UMass Amherst)

W+jet@NLO+PS

May 6, 2019 18 / 30

Showered result compared with $W\gamma$ V2

Differential cross section as a function of transverse momentum of the 1st - 4th leading jets

W+jet@NLO+PS

Showered result compared with $W\gamma$ V2

Differential cross section as a function of the transverse mass of lepton-neutrino pair

Showered result compared with $W\gamma$ V2

Differential cross section as a function of the transverse momentum of the charged lepton

21 / 30

Estimate the significance of the EW contribution

- Comparison between Wj production with and without EW corrections; events are generated by VRES
- ▶ Transverse momentum of jets distribution

Estimate the significance of the EW contribution

▶ Transverse mass of lepton-neutrino pair distribution

Estimate the significance of the EW contribution

▶ Transverse momentum of the charged lepton

24 / 30

Summary

Outline

• What are we aiming at?

- Treatment of Resasonance in VRES
- MiNLO method

Matching to Parton Shower Strategy Phenomenological results at the LHC

э.

・ロト ・回ト ・ヨト ・ヨト

Summary

- Brief introduction of the POWHEG-RES machinery and MiNLO approach
- POWHEG merging (with PYTHIA8.2)
- Comparison between POWHEG V2 and POWHEG VRES versions
- Electroweak corrections to W + jet production
- Remark: the (relative) EW corrections are expected as a few percent ⇒ error needs be under well control (current result with 1.44 × 10⁸ events ⇒ ? ~ 1 billion)

MiNLO method³

- Multi-scale improved NLO
- Originally developed as an algorithm for the optimal choice of scales in NLO QCD calculations (massive colorless systems + n-jets)
- As a byproduct, it provides the suppression for the QCD singularities of the LO process preserving the NLO accuracy of the calculation

³K.Hamilton *et al.*, JHEP **1210** (2012), JHEP **1305** (2013) \rightarrow ($\equiv \rightarrow$)

J.Z. (UMass Amherst)

W+jet@NLO+PS

MiNLO Method

MiNLO formulation

Scale choice in QCD processes

$$P = \frac{d\sigma}{d\Phi} = \alpha_s^N (\mu_R) B + \alpha_s^{N+1} (\mu_R) \left[V + N \ b_0 \log \frac{\mu_R^2}{Q^2} B \right] + \alpha_s^{N+1} (\mu_R) R,$$
$$\frac{\partial P}{\partial \log \mu_R} = -N \ b_0 \alpha_s^{N+1} (\mu_R) B + N \ b_0 \alpha_s^{N+1} (\mu_R) B + \mathcal{O} \left(\alpha_s^{N+2} \right)$$

J.Z. (UMass Amherst)

W+jet@NLO+PS

∃ > May 6, 2019 28 / 30

ъ

MiNLO formulation

• In order to keep this feature, when using multi-scale couplings at LO, i.e., $\alpha_s^{m+n}(\mu_R) B \Rightarrow \alpha_s^m(Q) \prod_{i=1}^{n} \alpha_s(q_i) B$, in the explicitly scale dependent terms of V set the scale to be the geometric mean of the multi-scale set: $\mu_R \to \mu_R \doteq \left[Q^m \times \prod_{i=1}^n q_i \right]^{\frac{1}{m+n}}$

Primary system + n partons

- Insert a Sudakov form factor for each colored line
- Subtract effective NLO correction introduced via Sudakovs in the Born term, i.e.,

/ 30

W+jet@NLO+PS

MiNLO example: H + 1 jet

• Pure NLO:

$$d\sigma = \bar{B}d\Phi_n = \alpha_s^3\left(\mu_R\right) \left[B + \alpha_s V\left(\mu_R\right) + \alpha_s \int d\Phi_{\rm rad}R\right] d\Phi_n$$

• MiNLO:

 $\Delta($

$$\bar{B} = \alpha_s^2 \left(M_H \right) \alpha_s \left(q_T \right) \Delta_g^2 \left(q_T, M_H \right) \left[B \left(1 - 2\Delta_g^{(1)} \left(q_T, M_H \right) \right) + \bar{\alpha}_s V \left(\bar{\mu}_R \right) + \bar{\alpha}_s \int d\Phi_{\rm rad} R \right]$$

W+jet@NLO+PS

May 6, 2019 30 / 30

∃ 𝒫𝔄𝔅

イロト 不同ト イヨト イヨト