## Asymmetry Observables and the Origin of $R_{D^{(*)}}$ Anomalies

Pouya Asadi

**Rutgers University** 

asadi@physics.rutgers.com

Based on : 1810.06597, 1904.XXXXX In collaboration with : Matthew Buckley, David Shih

Talk Presented @ PHENO 2019

May 7, 2019

200



- $R_{D^{(*)}}$  Solutions
- Some Asymmetry Observables
- More On  $F_{D^*}^L$

### New Physics in the Flavor Experiments

• There are various hints of new physics (NP) in the flavor experiments.

### New Physics in the Flavor Experiments

- There are various hints of new physics (NP) in the flavor experiments.
- E.g.  $\geq 3\sigma$  discrepancy with the SM in

### New Physics in the Flavor Experiments

- There are various hints of new physics (NP) in the flavor experiments.
- E.g.  $\geq 3\sigma$  discrepancy with the SM in

$$R_{D^{(*)}} \equiv \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}l\nu)}, \quad l = e, \mu$$

### New Physics in the Flavor Experiments

- There are various hints of new physics (NP) in the flavor experiments.
- E.g.  $\geq$  3 $\sigma$  discrepancy with the SM in

$$\mathsf{R}_{D^{(*)}} \equiv \frac{\mathsf{\Gamma}(B \to D^{(*)} \tau \nu)}{\mathsf{\Gamma}(B \to D^{(*)} l \nu)}, \quad l = e, \mu$$



$$\begin{array}{rcl} R_D^{obs} &=& 0.407 \pm 0.046, \\ R_D^{SM} &=& 0.299 \pm 0.003, \end{array}$$



### The Most General EFT

• SM contribution :

 $\langle D^{(*)}|\bar{c}\gamma^{\mu}P_Lb|\bar{B}\rangle$  $\langle \tau \bar{\nu} | \bar{\tau} \gamma^{\nu} P_L \nu | 0 \rangle$  $\frac{g_{\mu\nu}}{m_W^2}$  $\langle D^{(*)}\tau\nu| (\bar{c}\gamma^{\mu}P_{L}b) (\bar{\tau}\gamma^{\nu}P_{L}\nu) |\bar{B}\rangle$ 



### The Most General EFT

• SM contribution :

for



• The most general dim-6 effective Hamiltonian:

$$\mathcal{H}_{\mathrm{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} \sum_{X=S,V,T \atop M,N=L,R} C^X_{MN} \mathcal{O}^X_{MN},$$

$$\begin{aligned} \mathcal{O}_{MN}^{S} &\equiv (\bar{c}P_{M}b)(\bar{\tau}P_{N}\nu), \\ \mathcal{O}_{MN}^{V} &\equiv (\bar{c}\gamma^{\mu}P_{M}b)(\bar{\tau}\gamma_{\mu}P_{N}\nu), \\ \mathcal{O}_{MN}^{T} &\equiv (\bar{c}\sigma^{\mu\nu}P_{M}b)(\bar{\tau}\sigma_{\mu\nu}P_{N}\nu), \end{aligned} \\ M, N = R \text{ or } L (\text{SM} : C_{LL}^{V} = 1). \end{aligned}$$

Back Up

## Minimal Models

| Operator Combination                                              | Viability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $O_{XL}^S$                                                        | $(Br(B_c \rightarrow \tau \nu))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $O_{LL}^V$                                                        | ✗ (collider bounds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $O_{LL}^S - x O_{LL}^T, O_{LL}^V$                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $O_{RL}^{S}, O_{LL}^{V}$                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $O_{LL}^S + x O_{LL}^T$                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $O_{LL}^V$                                                        | $(b \rightarrow s \nu \nu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $O_{LL}^V$                                                        | $(b \rightarrow s \nu \nu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $O_{RL}^S$                                                        | $\bigstar$ ( $R_{D^{(*)}}$ value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $O_{XR}^S$                                                        | $(Br(B_c \rightarrow \tau \nu))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $O_{RR}^V$                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $O_{RR}^S + x O_{RR}^T$                                           | $(b \rightarrow s \nu \nu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\mathcal{O}_{RR}^V, \ \mathcal{O}_{RR}^S - x \mathcal{O}_{RR}^T$ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $O_{LR}^{S}, O_{RR}^{V}$                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                   | $\begin{array}{c} \textbf{Operator Combination} \\ \hline & \mathcal{O}_{KL}^{S} \\ \mathcal{O}_{LL}^{S} - x\mathcal{O}_{LL}^{S},  \mathcal{O}_{LL}^{V} \\ \mathcal{O}_{RL}^{S} - x\mathcal{O}_{LL}^{S},  \mathcal{O}_{LL}^{V} \\ \mathcal{O}_{RL}^{S} + x\mathcal{O}_{LL}^{S} \\ \mathcal{O}_{LL}^{V} \\ \mathcal{O}_{LL}^{V} \\ \mathcal{O}_{RL}^{V} \\ \mathcal{O}_{RR}^{S} \\ \mathcal{O}_{RR}^{S} \\ \mathcal{O}_{RR}^{S} + x\mathcal{O}_{RR}^{S} \\ \mathcal{O}_{RR}^{S} - s\mathcal{O}_{RR}^{S} \\ \mathcal{O}_{RR}^{S},  \mathcal{O}_{RR}^{S} \end{array}$ |

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

## Minimal Models

|                              | Mediator                                       | Operator Combination                                              | Viability                              |                      |         |
|------------------------------|------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|----------------------|---------|
|                              | Colorless Scalars                              | $O_{XL}^S$                                                        | $(Br(B_c \rightarrow \tau \nu))$       |                      |         |
|                              | $W'^{\mu}$ (LH fermions)                       | $O_{LL}^V$                                                        | <ul> <li>(collider bounds)</li> </ul>  |                      |         |
|                              | $S_1$ LQ ( $\bar{3}$ , 1, 1/3) (LH fermions)   | $O_{LL}^S - x O_{LL}^T$ , $O_{LL}^V$                              | 1                                      |                      |         |
|                              | $U_1^{\mu}$ LQ $(3, 1, 2/3)$ (LH fermions)     | $O_{RL}^S$ , $O_{LL}^V$                                           | 1                                      |                      |         |
|                              | R <sub>2</sub> LQ (3, 2, 7/6)                  | $O_{LL}^S + x O_{LL}^T$                                           | 1                                      |                      |         |
|                              | $S_3$ LQ ( $\bar{3}, 3, 1/3$ )                 | $O_{LL}^V$                                                        | $(b \rightarrow s \nu \nu)$            |                      |         |
|                              | $U_3^{\mu}$ LQ (3, 3, 2/3)                     | $O_{LL}^V$                                                        | $(b \rightarrow s\nu\nu)$              |                      |         |
|                              | $V_2^{\mu}$ LQ ( $\bar{3}, 2, 5/6$ )           | $O_{RL}^S$                                                        | $\bigstar (R_{D^{(*)}} \text{ value})$ |                      |         |
|                              | Colorless Scalars                              | $O_{XB}^S$                                                        | $(Br (B_c \rightarrow \tau \nu))$      |                      |         |
|                              | $W^{\prime\mu}$ (RH fermions)                  | $O_{RR}^V$                                                        | 1                                      |                      |         |
|                              | $\tilde{R}_2$ LQ (3, 2, 1/6)                   | $O_{RR}^S + x O_{RR}^T$                                           | $(b \rightarrow s\nu\nu)$              |                      |         |
|                              | $S_1$ LQ ( $\bar{3}$ , 1, 1/3) (RH fermions)   | $\mathcal{O}_{RR}^V, \ \mathcal{O}_{RR}^S - x \mathcal{O}_{RR}^T$ | 1                                      |                      |         |
|                              | $U_1^{\mu}$ LQ $(3, 1, 2/3)$ (RH fermions)     | $O_{LR}^S, O_{RR}^V$                                              | 1                                      |                      |         |
|                              | Models with LH neutrinos                       | Mo                                                                | dels with RH neutrino:                 | 5                    |         |
| 0.35<br>0.30<br>0.25<br>0.20 | M<br>M<br>M<br>M                               | 0.35<br>0.35<br>2 <sup>5</sup><br>0.25                            |                                        |                      |         |
| 0.                           | 1 0.2 0.3 0.4 0.5 0.6<br><i>R</i> <sub>D</sub> | 0.7 0.1 0.2                                                       | 0.3 0.4 0.5<br>R <sub>D</sub>          | .6 0.7 < 클 > < 클 > 클 | 9<br>5/ |

Summary

Back Up

# **Discerning Different Solutions**

## **Discerning Different Solutions**

Different models generate effective operators with different Lorentz structures.

## **Discerning Different Solutions**

Different models generate effective operators with different Lorentz structures. Hence, some asymmetry observables can help.

## **Discerning Different Solutions**

Different models generate effective operators with different Lorentz structures. Hence, some asymmetry observables can help.



More On F

### **Discerning Different Solutions**

Different models generate effective operators with different Lorentz structures. Hence, some asymmetry observables can help.



Vlore On F

## **Discerning Different Solutions**

Different models generate effective operators with different Lorentz structures. Hence, some asymmetry observables can help.



| Observable          | $\mathcal{A}_{FB}$ | $\mathcal{A}_{FB}^{*}$ | $\mathcal{P}_{\tau}$ | $\mathcal{P}^*_{	au}$ | $\mathcal{P}_{\perp}$ | $\mathcal{P}_{\perp}^{*}$ | $\mathcal{P}_{T}$ | $\mathcal{P}_T^*$ |
|---------------------|--------------------|------------------------|----------------------|-----------------------|-----------------------|---------------------------|-------------------|-------------------|
| SM value            | -0.360             | 0.063                  | 0.325                | -0.497                | -0.842                | -0.499                    | 0                 | 0                 |
| Projected Precision | 10%                | _                      | 3%                   | -                     | 10%                   | _                         | _                 | -                 |
|                     |                    |                        |                      |                       |                       |                           | =                 |                   |

うくで 6/37

# Discerning Different Solutions at Belle II

• Let us assume we measure  $R_{D^{(*)}}$  in Belle II and discover NP.

#### Discerning Different Solutions at Belle II

- Let us assume we measure  $R_{D^{(*)}}$  in Belle II and discover NP.
- In each model, the range of the Wilson coefficients explaining the  $R_{D^{(*)}}$  has a different imprint on other observables. Can we leverage that to distinguish models from one another?

### Discerning Different Solutions at Belle II

- Let us assume we measure  $R_{D^{(*)}}$  in Belle II and discover NP.
- In each model, the range of the Wilson coefficients explaining the  $R_{D^{(*)}}$  has a different imprint on other observables. Can we leverage that to distinguish models from one another?
- It highly depends on the measured  $R_{D^{(*)}}$  value.

## Two Extreme Outcomes for $R_{D^{(*)}}$



 $R_D = 0.407 \quad R_{D^*} = 0.304 \ R_D = 0.340 \quad R_{D^*} = 0.275$ 

・ロト ・ ロト ・ ヨト ・ ヨー うへぐ

ummary

Back Up

#### $R_D = 0.407$ and $R_{D^*} = 0.304$



#### $R_D = 0.340$ and $R_{D^*} = 0.275$



### Distinguishing Various Minimal Models

- We develop a simple  $\chi^2$  test to see how well each pair of models can be distinguished.

#### Distinguishing Various Minimal Models

- We develop a simple  $\chi^2$  test to see how well each pair of models can be distinguished.
- Can tell all the models apart; we may need to resort the *CP*-odd observable  $\mathcal{P}_{T}^{(*)}$  in the second scenario.

$$F_{D^*}^L = \frac{\Gamma(\bar{B} \to D_L^* \tau \nu)}{\Gamma(\bar{B} \to D_L^* \tau \nu) + \Gamma(\bar{B} \to D_T^* \tau \nu)}$$

$$F_{D^*}^{L} = \frac{\Gamma(\bar{B} \to D_{L}^* \tau \nu)}{\Gamma(\bar{B} \to D_{L}^* \tau \nu) + \Gamma(\bar{B} \to D_{T}^* \tau \nu)}.$$
$$(F_{D^*}^{L})_{SM} = 0.457 \pm 0.01, \quad (F_{D^*}^{L})_{obs} = 0.60 \pm 0.08 \pm 0.04$$

• None of the existing minimal models can accommodate this new observation.

$$F_{D^*}^L$$
 : Another Asymmetry Observable

$$F_{D^*}^{L} = \frac{\Gamma(\bar{B} \to D_{L}^* \tau \nu)}{\Gamma(\bar{B} \to D_{L}^* \tau \nu) + \Gamma(\bar{B} \to D_{T}^* \tau \nu)}.$$
$$(F_{D^*}^{L})_{SM} = 0.457 \pm 0.01, \quad (F_{D^*}^{L})_{obs} = 0.60 \pm 0.08 \pm 0.04.$$

- None of the existing minimal models can accommodate this new observation.
- The observed value of  $R_{D^{(*)}}$  and  $Br(B_c \rightarrow \tau \nu)$  are constraining.

## $F_{D^*}^L$ : Another Asymmetry Observable

$$F_{D^*}^{L} = \frac{\Gamma(\bar{B} \to D_{L}^* \tau \nu)}{\Gamma(\bar{B} \to D_{L}^* \tau \nu) + \Gamma(\bar{B} \to D_{T}^* \tau \nu)}.$$
$$(F_{D^*}^{L})_{SM} = 0.457 \pm 0.01, \quad (F_{D^*}^{L})_{obs} = 0.60 \pm 0.08 \pm 0.04.$$

- None of the existing minimal models can accommodate this new observation.
- The observed value of  $R_{D^{(*)}}$  and  $Br(B_c \rightarrow \tau \nu)$  are constraining.
- Is there any combination of the dim-6 operators that can explain the observed value?

# Explaining the Observed $F_{D^*}^L$

• We look for the maximum of  $F_{D^*}^L$  under certain constraints. We show it can be achieved with all real WCs.

## Explaining the Observed $F_{D^*}^L$

We look for the maximum of F<sup>L</sup><sub>D\*</sub> under certain constraints.
 We show it can be achieved with all real WCs.



# Explaining the Observed $F_{D^*}^L$

We look for the maximum of F<sup>L</sup><sub>D\*</sub> under certain constraints.
 We show it can be achieved with all real WCs.



# Explaining the Observed $F_{D^*}^L$

• We look for the maximum of  $F_{D^*}^L$  under certain constraints. We show it can be achieved with all real WCs.



# Explaining the Observed $F_{D^*}^L$

We look for the maximum of F<sup>L</sup><sub>D\*</sub> under certain constraints.
 We show it can be achieved with all real WCs.



• Relatively large  $C_{RL}^V$ ,  $C_{LL}^T$ , and  $C_{LL}^V$  are required to explain the observed  $F_{D^*}^L$ .

# Explaining the Observed $F_{D^*}^L$

We look for the maximum of F<sup>L</sup><sub>D\*</sub> under certain constraints.
 We show it can be achieved with all real WCs.



- Relatively large  $C_{RL}^V$ ,  $C_{LL}^T$ , and  $C_{LL}^V$  are required to explain the observed  $F_{D^*}^L$ .
- Not sensitive to individual operators. Need a combination of all.

| $R_{D(*)}$ Solutions | Some Asymmetry Observables | More On F <sup>L</sup> <sub>D*</sub> | Summary | Back Up |  |  |  |
|----------------------|----------------------------|--------------------------------------|---------|---------|--|--|--|
|                      | Sum                        |                                      |         |         |  |  |  |
| Sumilary             |                            |                                      |         |         |  |  |  |



• There are many viable minimal models with a heavy mediator that can explain the  $R_{D^{(*)}}$  anomalies.
- There are many viable minimal models with a heavy mediator that can explain the  $R_{D(*)}$  anomalies.
- We can resort to some asymmetry observables  $(\mathcal{P}_{ au}^{(*)}, \mathcal{A}_{FR}^{(*)})$  $\mathcal{P}_{\perp}^{(*)}$ ) to distinguish various models from one another.



•  $F_{D^*}^L$  measurement sees  $\sim 1.5 - 2\sigma$  discrepancy with the SM.



- ${\it F}_{D^*}^{\it L}$  measurement sees  $\sim 1.5-2\sigma$  discrepancy with the SM.
- None of the existing models can explain the observed  $F_{D^*}^L$ .

- $F_{D^*}^L$  measurement sees  $\sim 1.5 2\sigma$  discrepancy with the SM.
- None of the existing models can explain the observed  $F_{D^*}^L$ .
- NP with Wilson coefficients  $C_{RI}^V$ ,  $C_{II}^T$ , and  $C_{II}^V$  (or their counterparts with right-handed neutrinos) are required to explain  $F_{D^*}^L$ .

- $F_{D*}^{L}$  measurement sees  $\sim 1.5 2\sigma$  discrepancy with the SM.
- None of the existing models can explain the observed  $F_{D^*}^L$ .
- NP with Wilson coefficients  $C_{RI}^V$ ,  $C_{II}^T$ , and  $C_{II}^V$  (or their counterparts with right-handed neutrinos) are required to explain  $F_{D^*}^L$ .

# THANK YOU!

Back Up

# BACK UP SLIDES

# BACK UP SLIDES

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の Q (~ 16/37

# Other Anomalies



うへで 17/37

# Uncertainties

#### BaBar@Hadronic( $\tau \rightarrow I$ )

| $\begin{array}{c} (\%) \\ \text{Source of uncertainty} & \mathcal{R}(D) \ \mathcal{R}(D) \\ \text{Additive uncertainties} \\ \hline \textbf{PDFs} \\ \text{MC statistics} & 4.4 \ 2.0 \\ \mathcal{B} \rightarrow D^{11}(\tau^{-1}/\Gamma) \stackrel{p}{=} \ \textbf{Fs} = 0.2 \ 0.2 \\ \mathcal{D}^{11} \rightarrow D^{11}(\tau^{-1}/\Gamma) \stackrel{p}{=} \ \textbf{Fs} = 0.2 \ 0.2 \\ \mathcal{D}^{11} \rightarrow D^{11}(\tau^{-1}/\Gamma) \stackrel{p}{=} \ \textbf{Fs} = 0.2 \ 0.2 \\ \mathcal{D}^{11} \rightarrow D^{11}(\tau^{-1}/\Gamma) \stackrel{p}{=} \ \textbf{Fs} = 0.8 \ 0.3 \\ \mathcal{B}(\mathcal{B} \rightarrow D^{-\tau}, \Gamma_{T}) & 1.8 \ 1.7 \\ \mathcal{D}^{11} \rightarrow D^{11}(\tau^{-1}/\Gamma) \stackrel{p}{=} \ \textbf{Ts} = 0.4 \ 0.3 \\ \mathcal{B}(\mathcal{B} \rightarrow D^{-\tau}, \Gamma_{T}) & 1.8 \ 1.7 \\ \mathcal{D}^{11} \rightarrow D^{11}(\tau^{-1}/\Gamma) \stackrel{p}{=} \ \textbf{Ts} = 0.4 \ 0.3 \\ \mathcal{D}^{11} \rightarrow D^{11}(\tau^{-1}/\Gamma) \stackrel{p}{=} \ \textbf{Ts} = 0.4 \ 0.3 \\ \mathcal{D}^{11} \rightarrow D^{11}(\tau^{-1}/\Gamma) \stackrel{p}{=} \ \textbf{Ts} = 0.4 \ 0.3 \ \textbf{Ts} = 0.4 \ \textbf{Ts} = $ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} \mbox{Additive uncertainties} \\ \hline \mbox{PDFs} \\ \hline \mbox{MC} statistics & 4.4 & 2.0 \\ \hline \mbox{MC} & 4.7 & 2.0 & 2.0 & 2.0 \\ \hline \mbox{D} & 7.7 & 7.7 & 1.0 & 1.0 & 0.0 \\ \hline \mbox{D} & 7.7 & 7.7 & 1.0 & 0.8 & 0.3 \\ \hline \mbox{B} & D & 7^* - 7.7 & 1.8 & 1.7 \\ \hline \mbox{D} & 7.7 & 7.7 & 1.2 & 2.6 \\ \hline \mbox{Constraints} & 1.2 & 2.6 \\ \hline \mbox{Constraints} & 1.2 & 0.3 \\ \hline Red-up/(sed-down 1 & 3.3 & 0.4 \\ \hline \mbox{Red-up/(sed-down 1 & 3.4 & 0.4 \\ \hline \mbox{Red-up/(sed-down 1 & 0.4 & 0.4 \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} {\rm PDFs} & \\ {\rm (MC statistics } & 4.20) \\ {\rm (B-D^{11}(\tau^{-}/\tau^{-})\Gamma) F s} & 0.2 & 0.2) \\ {\rm (D-D^{11}(\tau^{-}/\tau^{-})\Gamma) F s} & 0.2 & 0.2) \\ {\rm (B}(\bar{B}-D^{-r}(\tau^{-})) & 0.8 & 0.3 \\ {\rm (B}(\bar{B}-D^{-r}(\tau^{-})) & 0.8 & 0.3 \\ {\rm (B}(\bar{B}-D^{-r}(\tau^{-})) & 0.8 & 0.3 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.3 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.3 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.3 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.3 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.3 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.3 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.3 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.2 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.2 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.2 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.2 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.8 & 0.2 \\ {\rm (D^{11}(\bar{S}-1) F s} & 0.6 & 0.2 \\ \end{array} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{c} B \to D^{*1}(\tau- t- ) \in F_{P} & 0.2 & 0.2 \\ D^{**} \to D^{*1}(\pi^{-1} \tau^{-1}) & 0.8 & 0.3 \\ B(\bar{B} \to D^{*+}\tau^{-1}, \tau) & 0.8 & 0.3 \\ B(\bar{B} \to D^{*+}\tau^{-1}, \tau) & 1.8 & 1.7 \\ D^{**} \to D^{(1)}\pi\pi & 2.1 & 2.6 \\ \hline Cross-feed constraints \\ (MC statistics & 2.4 & 1.5 \\ f_{D^{*+}} & 5.0 & 2.0 \\ \hline Fixed backgrounds \\ MC statistics & 3.1 & 1.5 \\ \hline Efficiency corrections & 3.9 & 2.3 \\ \hline Multiplicative uncertainties \\ (MC statistics & 1.8 & 1.2 \\ (MC statistics & 1.8 & 1.2 \\ (MC statistics & 1.8 & 1.2 \\ \hline MC statistics & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{cccc} D^{**} \rightarrow D^{**}(e^w / \pi^2) & 0.7 & 0.5 \\ B(\vec{b} \rightarrow D^{**} + \nabla_{\vec{b}}) & 0.8 & 0.3 \\ B(\vec{b} \rightarrow D^{**} + \nabla_{\vec{b}}) & 0.8 & 0.3 \\ B(\vec{b} \rightarrow D^{**} + \nabla_{\vec{b}}) & 1.8 & 1.7 \\ D^{**} \rightarrow D^{**} n^2 & 1.2 & 2.6 \\ \hline \mbox{Constraints} & 2.4 & 1.5 \\ \hline D^{**} & 0.9 & 0.7 \\ \hline MC statistica & 2.4 & 1.5 \\ \hline Dred backgrounds & 0.8 & 0.8 \\ \hline MC statistica & 3.1 & 1.5 \\ \hline Efficiency corrections & 3.9 & 2.3 \\ \hline Multiplicative uncertainties \\ \hline (MC statistice & 1.8 & 12 \\ \hline (M + 2)^{**} (\pi^{*} / \Gamma^{*}) FF F & 1.6 & 0.4 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{l} \hline \textbf{Cross-feed constraints} \\ \hline \textbf{(MC statistics)} & 2.4 & 1.5 \\ \hline \textbf{(pr} & 5.0 & 200 \\ \hline \textbf{Fred-up/feed-down} & 1.3 & 0.4 \\ \hline \textbf{Ioopin constraints} & 1.2 & 0.3 \\ \hline \textbf{(MC statistics)} & 3.1 & 1.5 \\ \hline \textbf{(Efficiency corrections)} & 3.0 & 2.3 \\ \hline \textbf{MC statistics} & 1.8 & 1.2 \\ \hline \textbf{(MC statistics)} & 1.6 & 0.5 \\ \hline \textbf{(Statistics)} & 1.5 \\ \hline \textbf{(Statistics)} $                                                                                                                                                                                                                                  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\label{eq:rescaled_rest} \begin{split} & \mbox{Freed-up/feed-down} & 1.3 & 0.4 \\ & \mbox{Incomptonic matrix} & 1.2 & 0.3 \\ \hline & \mbox{Fixed backgrounds} & 1.2 & 0.3 \\ \hline & \mbox{MC statistics} & 3.1 & 1.5 \\ \hline & \mbox{Efficiency corrections} & 3.3 & 2.3 \\ \hline & \mbox{Moltpillcative uncertaintles} & \\ \hline & \mbox{MC statistics} & 1.8 & 1.2 \\ \hline & \mbox{MC statistics} & 1.8 & 1.2 \\ \hline & \mbox{B} \to D^{(s)}(\tau^{-}/\ell^{-}) p \mbox{Ffs} & 1.6 & 0.4 \\ \hline \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c c} \mbox{MC statistics} & 3.1 & 1.5 \\ \hline \mbox{Efficiency corrections} & 3.9 & 2.3 \\ \mbox{Multiplicative uncertainties} \\ \mbox{MC statistics} & 1.8 & 1.2 \\ \hline \mbox{B} \rightarrow D^{(*)}(\tau^{-}/\ell^{-}) p \ FFs & 1.6 & 0.4 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Efficiency corrections         3.9         2.3           Multiplicative uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Multiplicative uncertainties           MC statistics         1.8         1.2 $B \rightarrow D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs         1.6         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MC statistics 1.8 1.2<br>$B \rightarrow D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs 1.6 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\overline{B} \rightarrow D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs 1.6 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lepton PID 0.6 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\pi^0/\pi^{\pm}$ from $D^* \rightarrow D\pi$ 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Detection/Reconstruction 0.7 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $B(\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau) = 0.2  0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total syst. uncertainty 9.6 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total stat. uncertainty 13.1 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total uncertainty 16.2 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Belle@Semileptonic( $\tau \rightarrow I$ )

|                                                                                      | $\mathcal{R}(D^*)$ [% |
|--------------------------------------------------------------------------------------|-----------------------|
| Sources                                                                              | $\ell^{sig} = e, \mu$ |
| MC size for each PDF shape                                                           | 2.2                   |
| PDF shape of the normalization in $\cos \theta_{B-D^*\ell}$                          | +1.1                  |
| PDF shape of $B \rightarrow D^{**}\ell\nu_{\ell}$                                    | $^{+1.0}_{-1.7}$      |
| PDF shape and yields of fake $D^{(*)}$                                               | 1.4                   |
| PDF shape and yields of $B \rightarrow X_c D^*$                                      | 1.1                   |
| Reconstruction efficiency ratio $\varepsilon_{\text{norm}}/\varepsilon_{\text{sig}}$ | 1.2                   |
| Modeling of semileptonic decay                                                       | 0.2                   |
| $B(\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau)$                               | 0.2                   |
| Total systematic uncertainty                                                         | $^{+3.4}_{-3.5}$      |

| Scales with MC statistics                  |
|--------------------------------------------|
| Scales with DATA statistics                |
| Theory/External                            |
| Irreducible<br>Requires additional studies |

### Belle@Hadronic( $\tau \rightarrow h$ )

| Source                                                                             | $R(D^*)$        | $P_{\tau}$           |  |  |  |  |
|------------------------------------------------------------------------------------|-----------------|----------------------|--|--|--|--|
| Hadronic B composition                                                             | +7.8%<br>-6.9%  | +0.14<br>-0.11       |  |  |  |  |
| MC statistics for each PDF shape                                                   | +3.5%<br>-2.8%  | +0.13<br>-0.11       |  |  |  |  |
| Fake D <sup>*</sup> PDF shape                                                      | 3.0%            | 0.010                |  |  |  |  |
| Fake $D^*$ yield                                                                   | 1.7%            | 0.016                |  |  |  |  |
| $\bar{B} \rightarrow D^{**}\ell^-\bar{\nu}_\ell$                                   | 2.1%            | 0.051                |  |  |  |  |
| $\bar{B} \rightarrow D^{**} \tau^- \bar{\nu}_{\tau}$                               | 1.1%            | 0.003                |  |  |  |  |
| $\bar{B} \rightarrow D^* \ell^- \bar{\nu}_\ell$                                    | 2.4%            | 0.008                |  |  |  |  |
| $\tau$ daughter and $\ell^-$ efficiency                                            | 2.1%            | 0.018                |  |  |  |  |
| MC statistics for efficiency calculation                                           | 1.0%            | 0.018                |  |  |  |  |
| EvtGen decay model                                                                 | +0.8%<br>-0.0%  | $^{+0.016}_{-0.000}$ |  |  |  |  |
| Fit bias                                                                           | 0.3%            | 0.008                |  |  |  |  |
| $B(\tau^- \rightarrow \pi^- \nu_\tau)$ and $B(\tau^- \rightarrow \rho^- \nu_\tau)$ | 0.3%            | 0.002                |  |  |  |  |
| $P_{\tau}$ correction function                                                     | 0.1%            | 0.018                |  |  |  |  |
| Common sources                                                                     |                 |                      |  |  |  |  |
| Tagging efficiency correction                                                      | 1.4%            | 0.014                |  |  |  |  |
| D <sup>*</sup> reconstruction                                                      | 1.3%            | 0.007                |  |  |  |  |
| D sub-decay branching fractions                                                    | 0.7%            | 0.005                |  |  |  |  |
| Number of $B\bar{B}$                                                               | 0.4%            | 0.005                |  |  |  |  |
| Total systematic uncertainty                                                       | +10.4%<br>-9.5% | +0.20<br>-0.17       |  |  |  |  |

# Individual Operator Effects

$$\mathcal{H}_{\rm eff} = \frac{4G_F V_{cb}}{\sqrt{2}} \sum_{\substack{X=S,V,T\\M,N=L,R}} C_{MN}^X \mathcal{O}_{MN}^X,$$

ary

Back Up

# Individual Operator Effects

$$\mathcal{H}_{\rm eff} = \frac{4G_F V_{cb}}{\sqrt{2}} \sum_{\substack{X=S,V,T\\M,N=L,R}} C_{MN}^X \mathcal{O}_{MN}^X$$



うへで 19/37

E

# All Operators

|                           | Operator                                                                                                            |                       | Fierz identity                                             | Allowed Current               | $\delta \mathcal{L}_{\mathrm{int}}$                                                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------|
| $\mathcal{O}_{V_L}$       | $(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$                                                       |                       |                                                            | $(1, 3)_0$                    | $(g_q \bar{q}_L oldsymbol{	au} \gamma^\mu q_L + g_\ell ar{\ell}_L oldsymbol{	au} \gamma^\mu \ell_L) W'_\mu$ |
| $\mathcal{O}_{V_R}$       | $(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$                                                       |                       |                                                            |                               |                                                                                                             |
| $\mathcal{O}_{S_R}$       | $(\bar{c}P_Rb)(\bar{\tau}P_L\nu)$                                                                                   |                       |                                                            |                               | $() = d + () = \cdots = d^{\dagger} + () \overline{d} - d)$                                                 |
| $\mathcal{O}_{S_L}$       | $(\bar{c}P_Lb)(\bar{\tau}P_L\nu)$                                                                                   |                       |                                                            | $/^{(1,2)_{1/2}}$             | $(\lambda_d q_L u_R \phi + \lambda_u q_L u_R i \tau_2 \phi^2 + \lambda_\ell \epsilon_L e_R \phi)$           |
| $\mathcal{O}_T$           | $(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$                                                     |                       |                                                            |                               |                                                                                                             |
| $\mathcal{O}'_{V_{\tau}}$ | $(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$                                                       | $\longleftrightarrow$ | Ov. (                                                      | $(3,3)_{2/3}$                 | $\lambdaar{q}_Loldsymbol{	au}\gamma_\mu\ell_Loldsymbol{U}^\mu$                                              |
| • 1                       |                                                                                                                     |                       |                                                            | (3,1)                         | $(\lambda \bar{a}_L \gamma_{\mu} \ell_L + \tilde{\lambda} \bar{d}_R \gamma_{\mu} e_R) U^{\mu}$              |
| $\mathcal{O}'_{V_R}$      | $(\bar{\tau}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$                                                       | $\leftrightarrow$     | $-2\mathcal{O}_{S_R}$                                      | /(0,1)2/3                     | (xqL /µcL + xak /µck)c                                                                                      |
| $\mathcal{O}_{S_R}'$      | $(\bar{\tau}P_Rb)(\bar{c}P_L\nu)$                                                                                   | $\longleftrightarrow$ | $-\frac{1}{2}\mathcal{O}_{V_R}$                            |                               | ~                                                                                                           |
| $\mathcal{O}_{S_L}'$      | $(\bar{\tau}P_L b) (\bar{c}P_L \nu)$                                                                                | $\longleftrightarrow$ | $-\frac{1}{2}\mathcal{O}_{S_L} - \frac{1}{8}\mathcal{O}_T$ | $(3, 2)_{7/6}$                | $(\lambda  ar{u}_R \ell_L + \lambda  ar{q}_L i 	au_2 e_R) R$                                                |
| $\mathcal{O}'_T$          | $(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$                                                     | $\longleftrightarrow$ | $-6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$           |                               |                                                                                                             |
| $\mathcal{O}_{V_L}''$     | $(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$                                               | $\longleftrightarrow$ | $-\mathcal{O}_{V_R}$                                       |                               |                                                                                                             |
| $\mathcal{O}_{V_R}''$     | $(\bar{\tau}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$                                               | $\longleftrightarrow$ | $-2\mathcal{O}_{S_R}$                                      | $(\bar{\bf 3},{f 2})_{5/3}$   | $(\lambda  ar{d}^c_R \gamma_\mu \ell_L + 	ilde{\lambda}  ar{q}^c_L \gamma_\mu e_R) V^\mu$                   |
| $\mathcal{O}_{S_R}''$     | $(\bar{\tau}P_Rc^c)(\bar{b}^cP_L\nu)$                                                                               | $\longleftrightarrow$ | $\frac{1}{2}\mathcal{O}_{V_L}$                             | $(\bar{\bf 3},{\bf 3})_{1/3}$ | $\lambdaar{q}_L^{ m c}i	au_2oldsymbol{	au}\ell_Loldsymbol{S}$                                               |
| $\mathcal{O}_{S_L}''$     | $(\bar{	au}P_Lc^c)(\bar{b}^cP_L u)$                                                                                 | $\longleftrightarrow$ | $-\frac{1}{2}\mathcal{O}_{S_L} + \frac{1}{8}\mathcal{O}_T$ | $\rangle^{(ar{3},1)_{1/3}}$   | $(\lambda  ar q_L^c i 	au_2 \ell_L + 	ilde \lambda  ar u_R^c e_R) S$                                        |
| $\mathcal{O}_T''$         | $\left  \left( \bar{\tau} \sigma^{\mu\nu} P_L c^c \right) \left( \bar{b}^c \sigma_{\mu\nu} P_L \nu \right) \right.$ | $\longleftrightarrow$ | $-6\mathcal{O}_{S_L} - \frac{1}{2}\mathcal{O}_T$           |                               |                                                                                                             |

Figure: [1506.08896]

<ロ > < 回 > < 回 > < 巨 > < 巨 > < 巨 > 三 の < () 20 / 37



• Other processes can limit these large coefficients; in particular  $Br(B_c \rightarrow \tau \nu)$ . In SM :  $Br(B_c \rightarrow \tau \nu) \approx 2.3\%$ 

 $R_{D^{(*)}}$  Solutions Some Asymmetry Observables More On  $F_{D^*}^L$  Summary Back Up Constrain I :  $Br(B_c o au 
u)$ 

• Other processes can limit these large coefficients; in particular  $Br(B_c \rightarrow \tau \nu)$ . In SM :  $Br(B_c \rightarrow \tau \nu) \approx 2.3\%$ 

$$\begin{aligned} \frac{Br(B_c \to \tau \nu)}{Br(B_c \to \tau \nu)|_{\rm SM}} &= \left| 1 + \left( C_{LL}^V - C_{RL}^V \right) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} \left( C_{RL}^S - C_{LL}^S \right) \right|^2 \\ &+ \left| \left( C_{RR}^V - C_{LR}^V \right) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} \left( C_{LR}^S - C_{RR}^S \right) \right|^2. \end{aligned}$$

 $R_{D^{(*)}}$  Solutions Some Asymmetry Observables More On  $F_{D^*}^L$  Summary Back Up Constrain I :  $Br(B_c o au 
u)$ 

• Other processes can limit these large coefficients; in particular  $Br(B_c \rightarrow \tau \nu)$ . In SM :  $Br(B_c \rightarrow \tau \nu) \approx 2.3\%$ 

$$\begin{aligned} \frac{Br(B_c \to \tau \nu)}{Br(B_c \to \tau \nu)|_{\rm SM}} &= \left| 1 + \left( C_{LL}^V - C_{RL}^V \right) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} \left( C_{RL}^S - C_{LL}^S \right) \right|^2 \\ &+ \left| \left( C_{RR}^V - C_{LR}^V \right) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} \left( C_{LR}^S - C_{RR}^S \right) \right|^2. \end{aligned}$$

• Enhanced contribution from the scalar operators (same combination appearing in  $R_{D^*}$ ).

2

 $R_{D^{(*)}}$  Solutions Some Asymmetry Observables More On  $F_{D^*}^L$  Summary Back Up Constrain I :  $Br(B_c o au 
u)$ 

• Other processes can limit these large coefficients; in particular  $Br(B_c \rightarrow \tau \nu)$ . In SM :  $Br(B_c \rightarrow \tau \nu) \approx 2.3\%$ 

$$\begin{aligned} \frac{Br(B_c \to \tau \nu)}{Br(B_c \to \tau \nu)|_{\rm SM}} &= \left| 1 + \left( C_{LL}^V - C_{RL}^V \right) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} \left( C_{RL}^S - C_{LL}^S \right) \right|^2 \\ &+ \left| \left( C_{RR}^V - C_{LR}^V \right) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} \left( C_{LR}^S - C_{RR}^S \right) \right|^2. \end{aligned}$$

- Enhanced contribution from the scalar operators (same combination appearing in *R*<sub>*D*\*</sub>).
- $Br(B_c \rightarrow \tau \nu) \leqslant 10\%$  from the  $B_u \rightarrow \tau \nu$  at Z peak at LEP.

< □ > < 部 > < E > < E > E の Q (~ 22/37

Some of the mediators generating the  $C_{LL}^V$  or the  $C_{RR}^S + x C_{RR}^T$  can generate  $b \rightarrow s\nu\nu$  with the same couplings.

Some of the mediators generating the  $C_{LL}^V$  or the  $C_{RR}^S + x C_{RR}^T$  can generate  $b \rightarrow s\nu\nu$  with the same couplings.

$$\mathcal{O}_{LL}^{V} = (\bar{c}_L \gamma^{\mu} b_L) (\bar{\tau}_L \gamma_{\mu} \nu_L),$$
  
$$\mathcal{O}_{RR}^{S} = (\bar{c}_L b_R) (\bar{\tau}_L \nu_R),$$



4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の Q C
22 / 37

Some of the mediators generating the  $C_{LL}^V$  or the  $C_{RR}^S + xC_{RR}^T$  can generate  $b \rightarrow s\nu\nu$  with the same couplings.

$$\mathcal{O}_{LL}^{V} = (\bar{c}_L \gamma^{\mu} b_L) (\bar{\tau}_L \gamma_{\mu} \nu_L),$$
  
$$\mathcal{O}_{RR}^{S} = (\bar{c}_L b_R) (\bar{\tau}_L \nu_R),$$



These are neutral current constraints so will put severe bounds on the affected models.

$$\begin{array}{rcl} BR\left(B \to X_{s}\nu\nu\right) &\leqslant & 6.4 \times 10^{-4}, \\ BR\left(B \to K\nu\nu\right) &\leqslant & 1.6 \times 10^{-5}, \\ BR\left(B \to K^{*}\nu\nu\right) &\leqslant & 2.7 \times 10^{-5}. \end{array}$$

$$\begin{array}{lll} BR\left(B \to X_{s}\nu\nu\right) &\leqslant & 6.4\times10^{-4}, \\ BR\left(B \to K\nu\nu\right) &\leqslant & 1.6\times10^{-5}, \\ BR\left(B \to K^{*}\nu\nu\right) &\leqslant & 2.7\times10^{-5}. \end{array}$$

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= -2\sqrt{2}G_F V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \left[ C_L^{\nu} \left( \bar{s} \gamma^{\mu} (1 - \gamma^5) b \right) \left( \bar{\nu} \gamma_{\mu} (1 - \gamma^5) \nu \right) \right. \\ &+ C_R^{\nu} \left( \bar{s} \gamma^{\mu} (1 + \gamma^5) b \right) \left( \bar{\nu} \gamma_{\mu} (1 - \gamma^5) \nu \right) \right], \\ &\epsilon \equiv \frac{\sqrt{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}}{|(C_L^{\nu})^{SM}|}, \quad \eta \equiv -\frac{\mathcal{R}e \left( C_L^{\nu} C_R^{\nu*} \right)}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}. \end{aligned}$$

$$\begin{array}{rcl} BR\left(B \rightarrow X_{s}\nu\nu\right) &\leqslant & 6.4\times10^{-4},\\ BR\left(B \rightarrow K\nu\nu\right) &\leqslant & 1.6\times10^{-5},\\ BR\left(B \rightarrow K^{*}\nu\nu\right) &\leqslant & 2.7\times10^{-5}. \end{array}$$

 $\begin{aligned} \mathcal{H}_{\text{eff}} &= -2\sqrt{2}G_{F}V_{tb}V_{ts}^{*}\frac{\alpha}{4\pi}\left[C_{L}^{\nu}\left(\bar{s}\gamma^{\mu}(1-\gamma^{5})b\right)\left(\bar{\nu}\gamma_{\mu}(1-\gamma^{5})\nu\right)\right], \\ &+ C_{R}^{\nu}\left(\bar{s}\gamma^{\mu}(1+\gamma^{5})b\right)\left(\bar{\nu}\gamma_{\mu}(1-\gamma^{5})\nu\right)\right], \\ &\epsilon \equiv \frac{\sqrt{|C_{L}^{\nu}|^{2}+|C_{R}^{\nu}|^{2}}}{|(C_{L}^{\nu})^{SM}|}, \quad \eta \equiv -\frac{\mathcal{R}e\left(C_{L}^{\nu}C_{R}^{\nu*}\right)}{|C_{L}^{\nu}|^{2}+|C_{R}^{\nu}|^{2}}. \\ &BR\left(B \to K\nu\nu\right) = 4.5 \times 10^{-6}(1-2\eta)\epsilon^{2}, \\ &BR\left(B \to K^{*}\nu\nu\right) = 6.8 \times 10^{-6}(1+1.31\eta)\epsilon^{2}, \\ &BR\left(B \to X_{s}\nu\nu\right) = 2.7 \times 10^{-5}(1+0.09\eta)\epsilon^{2}. \end{aligned}$ 

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

$$\begin{array}{lll} BR\left(B \to X_{s}\nu\nu\right) &\leqslant & 6.4\times10^{-4}, \\ BR\left(B \to K\nu\nu\right) &\leqslant & 1.6\times10^{-5}, \\ BR\left(B \to K^{*}\nu\nu\right) &\leqslant & 2.7\times10^{-5}. \end{array}$$

 $\mathcal{H}_{\rm eff} = -2\sqrt{2}G_F V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \left[ C_L^{\nu} \left( \bar{s} \gamma^{\mu} (1-\gamma^5) b \right) \left( \bar{\nu} \gamma_{\mu} (1-\gamma^5) \nu \right) \right]$ +  $C_{R}^{\nu}\left(\bar{s}\gamma^{\mu}(1+\gamma^{5})b\right)\left(\bar{\nu}\gamma_{\mu}(1-\gamma^{5})\nu\right)$ ],  $\epsilon \equiv \frac{\sqrt{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}}{|(C_L^{\nu})^{SM}|}, \quad \eta \equiv -\frac{\mathcal{R}e(C_L^{\nu}C_R^{\nu*})}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}.$  $BR(B \rightarrow K \nu \nu) = 4.5 \times 10^{-6} (1-2\eta)\epsilon^2$  $BR(B \to K^* \nu \nu) = 6.8 \times 10^{-6} (1 + 1.31 \eta) \epsilon^2$  $BR(B \to X_s \nu \nu) = 2.7 \times 10^{-5} (1 + 0.09 \eta) \epsilon^2.$  $C_{IL}^V \leqslant 0.006,$   $C_{RR}^S \leqslant 0.01.$ 

# Constrain III : Collider Bounds

On a W' coupled to the LH particles : The accompanying Z' is severely constrained. Ruled out unless Z' is a wide resonance.

More On  $F_{\Gamma}^{L}$ 

## Constrain III : Collider Bounds

On a W' coupled to the LH particles : The accompanying Z' is severely constrained. Ruled out unless Z' is a wide resonance.



Figure: [1609.07138]

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ
 • ○ < ○</p>
 24/37

More On  $F_{\Gamma}^{L}$ 

# Constrain III : Collider Bounds

On a W' coupled to the LH particles : The accompanying Z' is severely constrained. Ruled out unless Z' is a wide resonance.



Figure: [1609.07138]

Things are better with RH neutrinos. But still severely tight from the LHC direct searches.

<ロ> < 回 > < 三 > < 三 > < 三 > 三 の Q (~ 24/37)

## Constrain III : Collider Bounds

• For the LQs, the pair production, single production, high pT tails and interference with DY, and the monojet searches are relevant.

 $R_{D(*)}$  Solutions

# Constrain III : Collider Bounds

• For the LQs, the pair production, single production, high pT tails and interference with DY, and the monojet searches are relevant.



Figure: [1810.10017]

Back Up

# Constrain III : Collider Bounds



# < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

nmary

Back Up

## Constrain III : Collider Bounds



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More On F

Summar

Back Up

## Constrain III : Collider Bounds



・ロト ・ ロト ・ ヨト ・ ヨー うへで

## Constrain III : Collider Bounds



### Figure: [1810.10017]

• Not quite strong enough to kill any LQ yet.

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 かん(\*
26 / 37

## Constrain III : Collider Bounds



Figure: [1810.10017]

- Not quite strong enough to kill any LQ yet.
- Can always introduce a new decay channel that the direct searches are blind too. LHC is trying to close that gap.



# Other Constraints

Numerous other bounds including :



# Other Constraints

Numerous other bounds including :

• Meson Mixings



# Other Constraints

Numerous other bounds including :

- Meson Mixings
- $D_{\rm s} \rightarrow \tau \nu$


# Other Constraints

Numerous other bounds including :

- Meson Mixings
- $D_{\rm s} \to \tau \nu$
- $b \rightarrow s\gamma$



Numerous other bounds including :

- Meson Mixings
- $D_s \rightarrow \tau \nu$
- $b \to s\gamma$
- $B_s \rightarrow \tau \tau$ : very loose experimental bounds



#### Other Constraints

Numerous other bounds including :

- Meson Mixings
- $D_s \rightarrow \tau \nu$
- $b \rightarrow s\gamma$
- $B_s \rightarrow \tau \tau$ : very loose experimental bounds
- Electroweak precision bounds : When introducing new gauge bosons or fermion mixings.

nary

Back Up

#### Constraining Hidden Channels



Figure: Talk by Abhijith Gandrakota





- Calculate the leptonic side matrix element.
- Use the available results (e.g. HQET or Lattice) for the Hadronic side.
- Integrate over various final state labels to get the numerical results.

#### $\mathsf{LH}\leftrightarrow\mathsf{RH}$

$$egin{aligned} h_{ au} &
ightarrow -h_{ au}, \qquad C_{LL}^{S, au} \leftrightarrow \left(C_{RR}^{S, au}
ight)^* \ , \qquad C_{RL}^X \leftrightarrow \left(C_{LR}^X
ight)^*, \ 1 + C_{LL}^V \leftrightarrow \left(C_{RR}^V
ight)^* \ , \end{aligned}$$

 $R_{D^{(*)}} \rightarrow R_{D^{(*)}}, \quad \mathcal{P}_x \rightarrow -\mathcal{P}_x, \quad \mathcal{A}_{FB} \rightarrow \mathcal{A}_{FB}.$ 

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

# Numerical Equations

$$\begin{aligned} \mathcal{A}_{FB} &\approx \frac{1}{R_D} \left\{ -0.11 \left( \left| 1 + C_{LL}^V + C_{RL}^V \right|^2 + \left| C_{RR}^V + C_{LR}^V \right|^2 \right) \right. \\ &- 0.35\mathcal{R}e \left[ (C_{LL}^S + C_{RL}^S) (C_{LL}^T)^* + (C_{RR}^S + C_{LR}^S)^* (C_{RR}^T) \right] \\ &- 0.24\mathcal{R}e \left[ (1 + C_{LL}^V + C_{RL}^V) (C_{LL}^T)^* + (C_{RR}^V + C_{LR}^V)^* (C_{RR}^T) \right] \\ &- 0.15\mathcal{R}e \left[ (1 + C_{LL}^V + C_{RL}^V) (C_{LL}^T + C_{RL}^S)^* + (C_{RR}^V + C_{LR}^V)^* (C_{RR}^S + C_{LR}^S) \right] \\ \mathcal{A}_{FB}^* &\approx \frac{1}{R_{D^*}} \left\{ -0.813 \left( \left| C_{LL}^T \right|^2 + \left| C_{RR}^T \right|^2 \right) \right. \\ &+ 0.016 \left( \left| 1 + C_{LL}^V \right|^2 + \left| C_{RR}^V \right|^2 \right) - 0.082 \left( \left| C_{RL}^V \right|^2 + \left| C_{LR}^V \right|^2 \right) \right. \\ &+ 0.066\mathcal{R}e \left[ C_{RL}^V (1 + C_{LL}^V)^* + (C_{LR}^V)^* C_{RR}^V \right] \\ &+ 0.095\mathcal{R}e \left[ (C_{RL}^S - C_{LL}^S) (C_{LL}^T)^* + (C_{RR}^S - C_{RR}^S)^* (C_{RR}^T) \right] \\ &+ 0.395\mathcal{R}e \left[ (1 + C_{LL}^V - C_{RL}^V) (C_{LL}^T)^* + (C_{RR}^S - C_{LR}^S)^* (C_{RR}^V - C_{LR}^V) \right] \\ &+ 0.023\mathcal{R}e \left[ (C_{LL}^T - C_{RL}^S) (1 + C_{LL}^V - C_{RL}^V)^* + (C_{RR}^S - C_{LR}^S)^* (C_{RR}^V - C_{LR}^V) \right] \right\}, \quad \Rightarrow 0.0142\mathcal{R}e \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^* (C_{RR}^V + C_{LR}^V) \right] \right\}, \quad \Rightarrow 0.023\mathcal{R}e \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^* (C_{RR}^V + C_{LR}^V) \right] \right\}, \quad \Rightarrow 0.002\mathcal{R}E \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^* (C_{RR}^V + C_{LR}^V) \right] \right], \quad \Rightarrow 0.02\mathcal{R}E \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^* (C_{RR}^V + C_{LR}^V) \right] \right], \quad \Rightarrow 0.02\mathcal{R}E \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^* (C_{RR}^V + C_{RR}^V) \right] \right], \quad \Rightarrow 0.02\mathcal{R}E \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^* (C_{RR}^V + C_{LR}^V) \right] \right], \quad \Rightarrow 0.02\mathcal{R}E \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^* (C_{RR}^V + C_{LR}^V) \right] \right], \quad \Rightarrow 0.02\mathcal{R}E \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^* (C_{RR}^V + C_{RR}^V) \right] \right], \quad \Rightarrow 0.0\mathcal{R}E \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^* (C_{RR}^V + C_{LR}^V) \right] \right], \quad \Rightarrow 0.0\mathcal{R}E \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T + C_{RR}^V) \right] \right], \quad \Rightarrow 0.0\mathcal{R}E \left[ (C_{LL}^T) (1 + C_{LL}^V + C_{$$

# Numerical Equations

$$\begin{aligned} \mathcal{P}_{\tau} &\approx \frac{1}{R_{D}} \left\{ 0.402 \left( \left| C_{LL}^{S} + C_{RL}^{S} \right|^{2} - \left| C_{RR}^{S} + C_{LR}^{S} \right|^{2} \right) \\ &+ 0.013 \left[ \left| C_{LL}^{T} \right|^{2} - \left| C_{RR}^{T} \right|^{2} \right] + 0.097 \left[ \left| 1 + C_{LL}^{V} + C_{RL}^{V} \right|^{2} - \left| C_{RR}^{V} + C_{LR}^{V} \right|^{2} \right] \\ &+ 0.512 \mathcal{R}e \left[ (1 + C_{LL}^{V} + C_{RL}^{V}) (C_{LL}^{S} + C_{RL}^{S})^{*} - (C_{RR}^{V} + C_{LR}^{V})^{*} (C_{RR}^{S} + C_{LR}^{S}) \right] \\ &- 0.099 \mathcal{R}e \left[ (1 + C_{LL}^{V} + C_{RL}^{V}) (C_{LL}^{T})^{*} - (C_{RR}^{V} + C_{LR}^{V})^{*} (C_{RR}^{T}) \right] \right\} \\ \mathcal{P}_{\tau}^{*} &\approx \frac{1}{R_{D^{*}}} \left\{ -0.127 \left( \left| 1 + C_{LL}^{V} \right|^{2} + \left| C_{RL}^{V} \right|^{2} - \left| C_{RR}^{V} \right|^{2} - \left| C_{LR}^{V} \right|^{2} \right) \\ &+ 0.011 \left( \left| C_{LL}^{S} - C_{RL}^{S} \right|^{2} - \left| C_{RR}^{S} - C_{LR}^{S} \right|^{2} \right) + 0.172 \left( \left| C_{LL}^{T} \right|^{2} - \left| C_{RR}^{T} \right|^{2} \right) \\ &+ 0.031 \mathcal{R}e \left[ \left( 1 + C_{LL}^{V} - C_{RL}^{V} \right) \left( C_{RL}^{S} - C_{LL}^{S} \right)^{*} - \left( C_{RR}^{V} - C_{LR}^{V} \right)^{*} \left( C_{LR}^{S} - C_{RR}^{S} \right) \\ &+ 0.350 \mathcal{R}e \left[ \left( 1 + C_{LL}^{V} \right) \left( C_{LL}^{T} \right)^{*} - \left( C_{RR}^{V} \right)^{*} \left( C_{RR}^{T} \right) \right] \\ &- 0.481 \mathcal{R}e \left[ \left( C_{RL}^{V} \right) \left( C_{LL}^{T} \right)^{*} - \left( C_{RR}^{V} \right)^{*} \left( C_{LR}^{T} \right) \right] \\ &+ 0.216 \mathcal{R}e \left[ \left( 1 + C_{LL}^{V} \right) \left( C_{RL}^{V} \right)^{*} - \left( C_{RR}^{V} \right)^{*} \left( C_{LR}^{V} \right) \right] \right\} \right\}$$

More On  $F_{D^*}^L$ 

Back Up

# Numerical Equations

$$\begin{split} \mathcal{P}_{\perp} &\approx \frac{1}{R_D} \mathcal{R}e \left\{ -0.350 \left[ (C_{LL}^T) \left( C_{LL}^S + C_{RL}^S \right)^* - (C_{RR}^T)^* \left( C_{RR}^S + C_{LR}^S \right) \right] \right. \\ &- 0.357 \left[ \left( 1 + C_{LL}^V + C_{RL}^V \right) \left( C_{LL}^S + C_{RL}^S \right)^* - \left( C_{RR}^V + C_{LR}^V \right)^* \left( C_{RR}^S + C_{LR}^S \right) \right] \right. \\ &- 0.247 \left[ \left( 1 + C_{LL}^V + C_{RL}^V \right)^* \left( C_{LL}^T \right) - \left( C_{RR}^V + C_{LR}^V \right) \left( C_{RR}^T \right)^* \right] \right. \\ &- 0.250 \left[ \left| 1 + C_{LL}^V + C_{RL}^V \right|^2 - \left| C_{RR}^V + C_{LR}^V \right|^2 \right] \right\} \\ \mathcal{P}_{\perp}^* &\approx \frac{1}{R_{D^*}} \mathcal{R}e \left\{ \left( C_{RR}^S - C_{LR}^S \right) \left[ 0.099 C_{RR}^T - 0.054 \left( C_{RR}^V - C_{LR}^V \right) \right]^* \right. \\ &- \left( C_{LL}^S - C_{RL}^S \right)^* \left[ 0.099 C_{LL}^T - 0.054 \left( 1 + C_{LL}^V - C_{RL}^V \right) \right] \\ &+ \left( C_{RR}^T \right) \left[ 0.146 C_{RR}^V - 0.478 C_{LR}^V - 1.855 C_{RR}^T \right]^* \\ &- \left( C_{LL}^T \right)^* \left[ 0.146 (1 + C_{LL}^V) - 0.478 C_{RL}^V - 1.855 C_{LL}^T \right] \\ &+ \left( C_{LR}^V \right) \left[ -0.081 C_{RR}^T + 0.025 C_{LR}^V - 0.075 C_{RR}^V \right]^* \\ &- \left( C_{RL}^V ^* \left[ -0.081 C_{LL}^T + 0.025 C_{RL}^V - 0.075 (1 + C_{LL}^V) \right] \\ &+ \left( C_{RR}^V \right) \left[ -0.071 C_{RR}^T - 0.075 C_{LR}^V + 0.126 C_{RR}^V \right]^* \\ \end{split}$$

#### Numerical Equations

$$\begin{aligned} \mathcal{P}_{T} &\approx \frac{1}{R_{D}} \mathcal{I}m \left\{ -0.350 \left[ \left( C_{LL}^{T} \right) \left( C_{LL}^{S} + C_{RL}^{S} \right)^{*} - \left( C_{RR}^{T} \right)^{*} \left( C_{RR}^{S} + C_{LR}^{S} \right) \right] \right. \\ &- 0.357 \left[ \left( 1 + C_{LL}^{V} + C_{RL}^{V} \right) \left( C_{LL}^{S} + C_{RL}^{S} \right)^{*} - \left( C_{RR}^{V} + C_{LR}^{V} \right)^{*} \left( C_{RR}^{S} + C_{LR}^{S} \right) \right] \right. \\ &- 0.247 \left[ \left( 1 + C_{LL}^{V} + C_{RL}^{V} \right)^{*} \left( C_{LL}^{T} \right) - \left( C_{RR}^{V} + C_{LR}^{V} \right) \left( C_{RR}^{T} \right)^{*} \right] \right\} \\ \mathcal{P}_{T}^{*} &\approx \frac{1}{R_{D^{*}}} \mathcal{I}m \left\{ \left( C_{RR}^{S} - C_{LR}^{S} \right) \left[ 0.099 C_{RR}^{T} - 0.054 \left( C_{RR}^{V} - C_{LR}^{V} \right) \right] \right. \\ &+ \left( C_{LL}^{S} - C_{RL}^{S} \right)^{*} \left[ 0.099 C_{LL}^{T} - 0.054 \left( 1 + C_{LL}^{V} - C_{RL}^{V} \right) \right] \\ &+ \left( C_{RR}^{T} \right) \left[ 0.146 C_{RR}^{V} - 0.478 C_{LR}^{V} \right]^{*} - \left( C_{LL}^{T} \right)^{*} \left[ 0.146 \left( 1 + C_{LL}^{V} \right) - 0.478 C_{RL}^{V} \right] \\ &- \left( C_{LR}^{V} \right) \left[ 0.081 C_{RR}^{T} \right]^{*} + \left( C_{RL}^{V} \right)^{*} \left[ 0.091 C_{LL}^{T} \right] \\ \end{aligned}$$

ummary

Back Up

### $\mathcal{P}_{\tau}$ Measurement

$$rac{1}{\Gamma}rac{d\Gamma}{d heta_{
m hel}} = rac{1}{2}\left(1+lpha_d \mathcal{P}^*_ au\cos heta_{
m hel}
ight)$$



$$\cos \theta_{\tau d} = \frac{2E_{\tau}E_d - m_{\tau}^2 - m_d^2}{2|\vec{p}_{\tau}||\vec{p}_d|} \quad q^2 - \text{frame}$$
$$|\vec{p}_{\tau}| = \frac{q^2 - m_{\tau}^2}{2\sqrt{q^2}} \quad q^2 - \text{frame}$$

 $|\vec{p_d^{\tau}}|\cos\theta_{\rm hel} = -\gamma \frac{|\vec{p}_{\tau}|}{E_{\tau}} E_d + \gamma |\vec{p_d}|\cos\theta_{\tau d} \quad \tau - \text{frame}$ 





<ロ > < 回 > < 回 > < 巨 > < 巨 > < 巨 > 三 の Q (~ 36 / 37

### $F_{D^*}^L$ Measurement

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{\rm hel}(D^*)} = \frac{3}{4}[2F_L^{D^*}\cos^2(\theta_{\rm hel}(D^*)) + (1 - F_L^{D^*})\sin^2(\theta_{\rm hel}(D^*))]$$



Figure: Talk by Karol Adamczyk @ CKM 2018