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Introduction

Magnetic fields (∼ µG) are detected at
different scales in the universe.

Small seed (primordial) fields can be
amplified by various mechanisms.
(Picture from I. Vovk’s Presentation.)

What is the origin of these primordial fields?

Generation mechanism affects the statistical
properties.
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Generation Mechanisms

Inflationary Magnetogenesis
Seed fields arise from vacuum fluctuationsa - very large correlation lengths.

Involves the breaking of conformal symmetry.

Scale invariant (or nearly) power spectrum.

Typically involves couplings like RµνρσFµνFρσ or f(φ)FµνF
µν .

aMichael S. Turner and Lawrence M. Widrow. “Inflation-produced, large-scale magnetic

fields”. In: Phys. Rev. D 37 (10 1988), pp. 2743–2754. doi: 10.1103/PhysRevD.37.2743. url:

https://link.aps.org/doi/10.1103/PhysRevD.37.2743; B. Ratra. “Cosmological ’seed’

magnetic field from inflation”. In: Astrophysical Journal Letters 391 (May 1992), pp. L1–L4.

doi: 10.1086/186384.
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Generation Mechanisms (Contd.)

Phase Transition Magnetogenesis
An out of equilibrium, first-order transition is typically needed.

The turbulence is coupled to the magnetic fields, affecting its evolution.

Violent bubble nucleation generates significant turbulencea.

Causal processes – limited correlation lengths (H−1
? ).

Two main phase transitions are:
1 Electroweak Phase Transition (T ∼ 100GeV)
2 QCD Phase Transition (T ∼ 150MeV)

aEdward Witten. “Cosmic separation of phases”. In: Phys. Rev. D 30 (2 1984),

pp. 272–285. doi: 10.1103/PhysRevD.30.272. url:

https://link.aps.org/doi/10.1103/PhysRevD.30.272.
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Phase Transition Magnetogenesis
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1. Modeling Magnetic Fields

Stochastic, and statistically isotropic, homogeneous, and Gaussian
magnetic fields. We work with the correlation function,

Bij(r) ≡ 〈Bi(x)Bj(x + r)〉 = MN(r)δij +
[
ML(r)−MN(r)

]
r̂ir̂j +MH(r)εijlrl

In Fourier space,

F (B)
ij (k) =

∫
d3r eik·r Bij(r)

This gives the symmetric and helical parts,

F (B)
ij (k)

(2π)3
= Pij(k̂)

EM (k)

4πk2
+ iεijlkl

HM (k)

8πk2

Here Pij(k̂) = δij − k̂ik̂j.
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1. Modeling Magnetic Fields (Contd.)

Mean magnetic energy density : EM =

∫
dk EM(k).

Magnetic integral scale: ξM(t) =

∫ ∞
0

dk k−1EM(k)

EM
.

Magnetic Helicity : HM =
1

V

∫
V

A ·B d3r =

∫
dk HM(k).

Figure: From
aa.washington.edu

We can relate the symmetric and helical components,

|HM | ≤ 2ξMEM ⇒ |HM (k)| ≤ 2k−1EM (k)
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2. Helicity and Parity Violation

Helical magnetic fields are produced by
mechanisms that involve (P ) violation.

P (and CP ) violation can be related to
processes giving rise to baryogenesis.

This is one of the Sakharov conditions.

Figure: From fnal.gov

This has been studied (examples1) by several authors.

1Tanmay Vachaspati. “Estimate of the primordial magnetic field helicity”. In: Phys. Rev. Lett. 87

(2001), p. 251302. doi: 10.1103/PhysRevLett.87.251302. arXiv: astro-ph/0101261 [astro-ph];

Kohei Kamada and Andrew J. Long. “Evolution of the Baryon Asymmetry through the Electroweak

Crossover in the Presence of a Helical Magnetic Field”. In: Phys. Rev. D94.12 (2016), p. 123509. doi:

10.1103/PhysRevD.94.123509. arXiv: 1610.03074 [hep-ph].
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3. Methods

Our free parameters:

Initial correlation length (ξM?) (ratio to H−1
? ).

Initial energy density (ρM?) (ratio to ρR?).

Initial fractional helicity (σ?).

Initial velocity of the plasma, u?.

We assume (also for velocity) the initial spectra EM (k, t?) and HM (k, t?) where:

Fij(k, t)

(2π)3
= Pij(k̂)

EM (k, t)

4πk2
+ iεijlkl

HM (k, t)

8πk2

Direct numerical simulations (DNS) using the Pencil Code – study the
evolution of EM (t) and ξM (t).
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4. Results

Case I: The Batchelor Spectrum, No Helicity

Figure: Q? = 10.

Figure: Q? = 0.1.
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4. Results (Contd.)

Case II: White Noise Spectrum, No Helicity

Figure: Q? = 1.

No inverse cascade.
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4. Results (Contd.)

Case III: White Noise Spectrum, With Helicity

Figure: Q? = 1.

At late times: (i) Some inverse transfer, (ii) Turnover from k2 to k4, (iii) Partial
to fully helical.
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4. Results (Contd.)

Case IV: Batchelor Spectrum, With Kinetic Helicity

Figure: Q? = 1.

Kinetic helicity transferred to magnetic helicity.

Pi goes towards β = 0, away from equilibrium.
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4. What We Learn

Initial helicity leads to maximal helicity at later times. Helicity conserving
evolution (β = 0).

No initial helicity: Decay along β = 2 - conserving2 the Saffman Integral.

Kinetically dominant: Decay along β = 4 - conserving the Loitsiansky
Integral.

We can predict the field characteristics at recombination.

2P. A. DAVIDSON. “On the decay of Saffman turbulence subject to rotation, stratification or an

imposed magnetic field”. In: Journal of Fluid Mechanics 663 (2010), 268292. doi:

10.1017/S0022112010003496.
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5. What We Learn (Contd.)

Figure: Comparing existing observational constraints to our analysis.
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6. Gravitational Waves

GWs can be generated by bubble collisions during the electroweak phase
transition.

The resulting magnetic field, and its coupling to the turbulence needs to be
modeled.

These B can also source turbulence, and hence more GWs.

See Tina Kahniashvili’s talk for more details.
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Thank You!
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Supplementary Slides
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Turbulence, MHD, and the pq Diagram

L =

∫
r2〈u(x) · u(x + r)〉 dr ∝ `5u2

`

S =

∫
〈u(x) · u(x + r)〉 dr ∝ `3u2

`

Re =
urmsξM

ν

pi(t) =
d ln Ei
dt

, qi(t) =
d ln ξi
dt

pi = (βi + 1)qi

Equilibrium line: pi = 2(1− qi).
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Decay Laws

We take the maximum comoving correlation length at the epoch of EW Phase
transition,

ξ? ≡ ξmax = H−1
?

(
a0

a?

)
∼ 6× 10−11 Mpc

and the maximum mean energy density as,

E? = 0.1× π2

30
g?T

4
? ∼ 4× 1058 eV cm−3

Non-helical case: ξ
ξ?

=
(
η
η?

) 1
2
, E

E? =
(
η
η?

)−1
.

Helical case: ξ
ξ?

=
(
η
η?

) 2
3
, E

E? =
(
η
η?

)−2
3

.

Partial : Turnover when
(η 1

2

η?

)
= exp

(
1

2σ

)
.
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Pencil Code

We solve the hydromagnetic equations for an isothermal relativistic gas with
pressure p = ρ/3

∂ ln ρ

∂t
= −4

3
(∇ · u + u · ∇ ln ρ) +

1

ρ

[
u · (J×B) + ηJ2

]
, (1)

∂u

∂t
= −u · ∇u +

u

3
(∇ · u + u · ∇ ln ρ)− u

ρ

[
u · (J×B) + ηJ2

]
−1

4
∇ ln ρ+

3

4ρ
J×B +

2

ρ
∇ · (ρνS) , (2)

∂B

∂t
= ∇× (u×B− ηJ), (3)

where Sij = 1
2(ui,j + uj,i)− 1

3δij∇ · u is the rate-of-strain tensor, ν is the viscosity,
and η is the magnetic diffusivity.
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