Evolution of Primordial Magnetic Fields from their Generation till Recombination

Sayan Mandal

Department of Physics, Carnegie Mellon University

 6^{th} May, 2018

Sayan Mandal (CMU) [Pheno 2019](#page-21-0)

 6^{th} May, 2018 1 / 22

- Axel Brandenburg (NORDITA; Carnegie Mellon University)
- Tina Kahniashvili (Carnegie Mellon University; Ilia State University)
- Alberto Roper Pol $(LASP \atop \text{at } UC \thinspace Boulder)$
- Alexander Tevzadze (Tbilisi State University; Carnegie Mellon University)
- Tanmay Vachaspati (Arizona State University)

Introduction

- Magnetic fields ($\sim \mu$ G) are detected at different scales in the universe.
- Small seed (primordial) fields can be amplified by various mechanisms. (Picture from I. Vovk's Presentation.)

Generation mechanism affects the statistical properties.

4 0 3 4

→ 4 B

Inflationary Magnetogenesis

- Seed fields arise from vacuum fluctuations^{a} very large correlation lengths.
- Involves the breaking of conformal symmetry.
- Scale invariant (or nearly) power spectrum.
- Typically involves couplings like $R^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$ or $f(\phi)F_{\mu\nu}F^{\mu\nu}$.

^aMichael S. Turner and Lawrence M. Widrow. "Inflation-produced, large-scale magnetic fields". In: Phys. Rev. D 37 (10 1988), pp. 2743-2754. DOI: [10.1103/PhysRevD.37.2743](http://dx.doi.org/10.1103/PhysRevD.37.2743). URL: <https://link.aps.org/doi/10.1103/PhysRevD.37.2743>; B. Ratra. "Cosmological 'seed' magnetic field from inflation". In: Astrophysical Journal Letters 391 (May 1992), pp. L1–L4. doi: [10.1086/186384](http://dx.doi.org/10.1086/186384).

Phase Transition Magnetogenesis

- An out of equilibrium, first-order transition is typically needed.
- The turbulence is coupled to the magnetic fields, affecting its evolution.
- Violent bubble nucleation generates significant turbulence^a.
- Causal processes limited correlation lengths (H_{\star}^{-1}) .
- Two main phase transitions are:
	- \bigcirc Electroweak Phase Transition (T ~ 100 GeV)
	- **2** QCD Phase Transition ($T \sim 150 \,\text{MeV}$)

^aEdward Witten. "Cosmic separation of phases". In: *Phys. Rev. D* 30 (2 1984), pp. 272-285. DOI: [10.1103/PhysRevD.30.272](http://dx.doi.org/10.1103/PhysRevD.30.272). URL: <https://link.aps.org/doi/10.1103/PhysRevD.30.272>.

PHYSICAL REVIEW D 96, 123528 (2017)

Evolution of hydromagnetic turbulence from the electroweak phase transition

Axel Brandenburg, ^{1,2,3,4} Tina Kahniashvili, ^{5,6,7,*} Sayan Mandal,⁵ Alberto Roper Pol,^{1,8} Alexander G. Tevzadze, $9^{9/7}$ and Tanmay Vachaspati¹⁰

PHYSICAL REVIEW FLUIDS 4, 024608 (2019)

Dynamo effect in decaying helical turbulence

Axel Brandenburg, ^{1, 2, 3, 4, 5, *} Tina Kahniashvili, ^{5, 6, 7} Sayan Mandal, ⁵ Alberto Roper Pol, ^{1, 8} Alexander G. Tevzadze,^{5,7,9} and Tanmay Vachaspati¹⁰

Sayan Mandal (CMU) [Pheno 2019](#page-0-0)

 6^{th} May, 2018 6 / 22

 298

イロト イ母ト イヨト イヨト

1. Modeling Magnetic Fields

Stochastic, and statistically isotropic, homogeneous, and Gaussian magnetic fields. We work with the correlation function,

$$
\mathcal{B}_{ij}(r) \equiv \langle B_i(\mathbf{x})B_j(\mathbf{x} + \mathbf{r})\rangle = M_N(r)\delta_{ij} + \left[M_L(r) - M_N(r)\right]\hat{r}_i\hat{r}_j + M_H(r)\epsilon_{ijl}r_l
$$

In Fourier space,

$$
\mathcal{F}_{ij}^{(B)}(\mathbf{k}) = \int d^3 \mathbf{r} \, e^{i\mathbf{k} \cdot \mathbf{r}} \, \mathcal{B}_{ij}(r)
$$

This gives the *symmetric* and *helical* parts,

$$
\frac{\mathcal{F}_{ij}^{(B)}(\mathbf{k})}{(2\pi)^3} = P_{ij}(\hat{\mathbf{k}}) \frac{E_M(k)}{4\pi k^2} + i\epsilon_{ijl}k_l \frac{H_M(k)}{8\pi k^2}
$$

Here $P_{ij}(\hat{\mathbf{k}}) = \delta_{ij} - \hat{k}_i \hat{k}_j$.

Sayan Mandal (CMU) **[Pheno 2019](#page-0-0)**

 6^{th} May, 2018 $7/22$

1. Modeling Magnetic Fields (Contd.)

Mean magnetic energy density: $\mathcal{E}_{\mathrm{M}} = \int dk E_{\mathrm{M}}(k)$. Magnetic integral scale: $\xi_M(t) =$ \int^{∞} $\overline{0}$ $dk k^{-1}E_{\rm M}(k)$ \mathcal{E}_{M} . Magnetic Helicity: $\mathcal{H}_{\text{M}} =$ 1 V Z V $\mathbf{A} \cdot \mathbf{B} d^3 \mathbf{r} = \int dk \, H_{\text{M}}(k).$ Figure: From

aa.washington.edu

We can relate the symmetric and helical components,

$$
|\mathcal{H}_M| \le 2\xi_M \mathcal{E}_M \qquad \Rightarrow \qquad |H_M(k)| \le 2k^{-1} E_M(k)
$$

 α α

2. Helicity and Parity Violation

- Helical magnetic fields are produced by mechanisms that involve (P) violation.
- \bullet P (and CP) violation can be related to processes giving rise to baryogenesis.
- This is one of the Sakharov conditions.

Figure: From fnal.gov

This has been studied $(examples¹)$ by several authors.

¹Tanmay Vachaspati. "Estimate of the primordial magnetic field helicity". In: Phys. Rev. Lett. 87 (2001), p. 251302. doi: [10.1103/PhysRevLett.87.251302](http://dx.doi.org/10.1103/PhysRevLett.87.251302). arXiv: [astro-ph/0101261 \[astro-ph\]](http://arxiv.org/abs/astro-ph/0101261); Kohei Kamada and Andrew J. Long. "Evolution of the Baryon Asymmetry through the Electroweak Crossover in the Presence of a Helical Magnetic Field". In: Phys. Rev. D94.12 (2016), p. 123509. doi: [10.1103/PhysRevD.94.123509](http://dx.doi.org/10.1103/PhysRevD.94.123509). arXiv: [1610.03074 \[hep-ph\]](http://arxiv.org/abs/1610.03074). $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Sayan Mandal (CMU) [Pheno 2019](#page-0-0)

3. Methods

Our free parameters:

- Initial correlation length $(\xi_{M\star})$ (ratio to H_{\star}^{-1}).
- Initial energy density $(\rho_{M_{\star}})$ (ratio to $\rho_{R_{\star}}$).
- Initial fractional helicity (σ_{\star}) .
- Initial velocity of the plasma, u_{\uparrow} .

We assume (also for velocity) the initial spectra $E_M(k, t_\star)$ and $H_M(k, t_\star)$ where:

$$
\frac{F_{ij}(\mathbf{k},t)}{(2\pi)^3} = P_{ij}(\hat{\mathbf{k}}) \frac{E_M(k,t)}{4\pi k^2} + i\epsilon_{ijl} k_l \frac{H_M(k,t)}{8\pi k^2}
$$

Direct numerical simulations (DNS) using the PENCIL CODE – study the evolution of $\mathcal{E}_M(t)$ and $\mathcal{E}_M(t)$.

4. Results

Case I: The Batchelor Spectrum, No Helicity

Figure: $Q_{\star} = 0.1$.

Þ

 290

ト イヨ

4 0 8 4

Case II: White Noise Spectrum, No Helicity

No inverse cascade.

 290

4 0 8

Case III: White Noise Spectrum, With Helicity

At late times: (i) Some inverse transfer, (ii) Turnover from k^2 to k^4 , (iii) Partial to fully helical.

つへへ

4. Results (Contd.)

Case IV: Batchelor Spectrum, With Kinetic Helicity

Kinetic helicity transferred to magnetic helicity.

 ${\bf P}_i$ goes towards $\beta = 0$, away from equilibrium.

つへへ

- Initial helicity leads to maximal helicity at later times. Helicity conserving evolution $(\beta = 0)$.
- No initial helicity: Decay along $\beta = 2$ conserving² the *Saffman Integral*.
- Kinetically dominant: Decay along $\beta = 4$ conserving the Loitsiansky Integral.
- We can predict the field characteristics at recombination.

²P. A. DAVIDSON. "On the decay of Saffman turbulence subject to rotation, stratification or an imposed magnetic field". In: *Journal of Fluid Mechanics* 663 (2010), 268292. DOI: [10.1017/S0022112010003496](http://dx.doi.org/10.1017/S0022112010003496). イロト イ押ト イヨト イヨトー D.

Sayan Mandal (CMU) [Pheno 2019](#page-0-0)

5. What We Learn (Contd.)

Figure: Comparing existing observational constraints t[o o](#page-14-0)[ur](#page-16-0) [a](#page-14-0)[na](#page-15-0)[l](#page-16-0)[ysi](#page-0-0)[s.](#page-21-0)

Sayan Mandal (CMU) [Pheno 2019](#page-0-0)

э

 299

重

×.

4 0 8 ∢母

- GWs can be generated by bubble collisions during the electroweak phase transition.
- The resulting magnetic field, and its coupling to the turbulence needs to be modeled.
- These B can also source turbulence, and hence more GWs.
- See Tina Kahniashvili's talk for more details.

Thank You!

重

 2990

メロト メタト メミト メミト

Supplementary Slides

 6^{th} May, 2018 19 / 22

画

 Ω

医阿雷氏阿雷氏

4 0 8 4

Turbulence, MHD, and the pq Diagram

$$
\mathcal{L} = \int r^2 \langle \mathbf{u}(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x} + \mathbf{r}) \rangle \, d\mathbf{r} \propto \ell^5 u_\ell^2
$$

$$
\mathcal{S} = \int \langle \mathbf{u}(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x} + \mathbf{r}) \rangle \, d\mathbf{r} \propto \ell^3 u_\ell^2
$$

$$
\text{Re} = \frac{u_{rms} \xi_M}{\nu}
$$

$$
p_i(t) = \frac{d \ln \mathcal{E}_i}{dt}, \qquad q_i(t) = \frac{d \ln \xi_i}{dt}
$$

$$
p_i = (\beta_i + 1) q_i
$$

Equilibrium line: $p_i = 2(1 - q_i)$.

Þ

 299

4 0 8 4

Decay Laws

We take the maximum *comoving* correlation length at the epoch of EW Phase transition,

$$
\xi_{\star} \equiv \xi_{\text{max}} = H_{\star}^{-1} \left(\frac{a_0}{a_{\star}} \right) \sim 6 \times 10^{-11} \,\text{Mpc}
$$

and the maximum mean energy density as,

$$
\mathcal{E}_{\star} = 0.1 \times \frac{\pi^2}{30} g_{\star} T_{\star}^4 \sim 4 \times 10^{58} \,\mathrm{eV \, cm^{-3}}
$$

.

Non-helical case:
$$
\frac{\xi}{\xi_{\star}} = \left(\frac{\eta}{\eta_{\star}}\right)^{\frac{1}{2}}
$$
, $\frac{\xi}{\xi_{\star}} = \left(\frac{\eta}{\eta_{\star}}\right)^{-1}$
\n*Helical case:* $\frac{\xi}{\xi_{\star}} = \left(\frac{\eta}{\eta_{\star}}\right)^{\frac{2}{3}}$, $\frac{\xi}{\xi_{\star}} = \left(\frac{\eta}{\eta_{\star}}\right)^{\frac{-2}{3}}$.
\n*Partial:* Turnover when $\left(\frac{\eta_{\frac{1}{2}}}{\eta_{\star}}\right) = \exp\left(\frac{1}{2\sigma}\right)$.

Sayan Mandal (CMU) [Pheno 2019](#page-0-0)

PENCIL CODE

We solve the hydromagnetic equations for an isothermal relativistic gas with pressure $p = \rho/3$

$$
\frac{\partial \ln \rho}{\partial t} = -\frac{4}{3} (\nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \ln \rho) + \frac{1}{\rho} [\mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) + \eta \mathbf{J}^2], \qquad (1)
$$

$$
\frac{\partial \mathbf{u}}{\partial t} = -\mathbf{u} \cdot \nabla \mathbf{u} + \frac{\mathbf{u}}{3} (\nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \ln \rho) - \frac{\mathbf{u}}{\rho} [\mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) + \eta \mathbf{J}^2]
$$

$$
-\frac{1}{4} \nabla \ln \rho + \frac{3}{4\rho} \mathbf{J} \times \mathbf{B} + \frac{2}{\rho} \nabla \cdot (\rho \nu \mathbf{S}), \qquad (2)
$$

$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B} - \eta \mathbf{J}), \qquad (3)
$$

where $\mathsf{S}_{ij}=\frac{1}{2}$ $\frac{1}{2}(u_{i,j} + u_{j,i}) - \frac{1}{3}$ $\frac{1}{3}\delta_{ij}\nabla \cdot \mathbf{u}$ is the rate-of-strain tensor, ν is the viscosity, and η is the magnetic diffusivity. 290