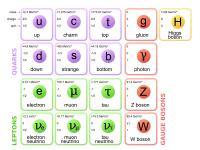
MIRROR SECTORS AND MIRROR STARS

Jack Setford with David Curtin

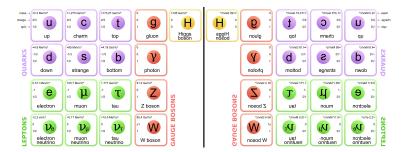
University of Toronto

PHENO 2019


7th May 2019

JACK SETFORD

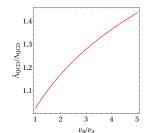
DQA


WHY MIRROR SECTORS?

- Mirror sectors are an (approximate) copy of the Standard Model.
- Some well motivated models (naturalness) predict mirror sectors, neutral naturalness, Mirror Twin Higgs.

WHY MIRROR SECTORS?

- Mirror sectors are an (approximate) copy of the Standard Model.
- Some well motivated models (naturalness) predict mirror sectors, neutral naturalness, Mirror Twin Higgs.


э.

MIRROR TWIN HIGGS

Mirror nuclear physics can be *similar* to SM nuclear physics.

Mirror sector mass scale ~ v_B

- Collider searches $\rightarrow v_B / v_A > 3$
- ΔN_{eff} , asymmetric reheating $\rightarrow v_B / v_A > 5$.

Mirror sector is at most 10% of total dark matter density (self interaction and large scale structure bounds.)

Predictive framework for cosmology, e.g. Helium mass fraction \rightarrow 75% (25% in SM).

[Chacko, Curtin, Geller, Tsai, arXiv:1803.03263]

- If physics of the mirror sector is similar enough to SM physics, it's reasonable to suppose mirror stars might form.
- Mirror stars of an exact mirror sector have been discussed before. [Foot, Ignatiev, Volkas, arXiv:astro-ph/9902065, arXiv:astro-ph/0011156]
- But no estimate of expected signal.
- We're interested in a broad class of models with mirror nuclear physics

 MTH model is a good benchmark.

STARS!

Standard Model stars were a particularly easy scientific discovery.

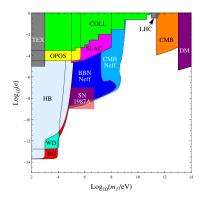
(日)

STARS!

Standard Model stars were a particularly easy scientific discovery.

MIRROR PHOTONS

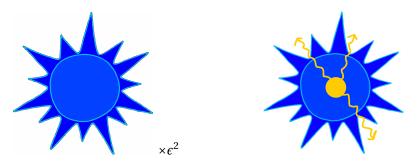
As usual in models with a second U(1) gauge boson we expect a kinetic mixing term:


$$\mathscr{L} \supset \frac{\epsilon}{2} F_{\mu\nu} F'^{\mu\nu}$$

Current bounds on ϵ are

 $\epsilon \lesssim 10^{-9}$.

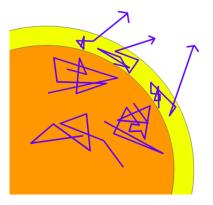
In MTH, ϵ is forbidden at 1and 2-loop, so small value arises naturally.

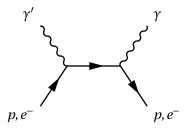

[Vogel, Redondo, arXiv:1311.2600]

SIGNALS FROM A MIRROR STAR

How can we see a mirror star? $\epsilon^2 L_{star}$ surface brightness:

Captured SM matter:




Captured SM matter is heated via ϵ^2 -suppressed processes: collisions with mirror nuclei, and photon conversion.

7th May 2019 7/13

PHOTON CONVERSION, X-RAY SIGNATURE

SM matter *catalyzes* mirror photon conversion:

Converted photons can heat up the captured material. There is an X-ray photosphere from which converted X-ray escape \rightarrow potential signature.

7TH MAY 2019 8/13

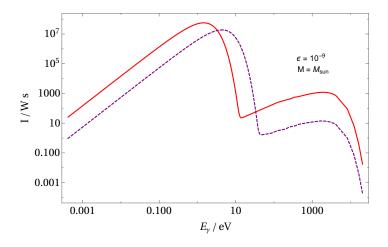
Obtain benchmark stellar profiles + star age (we assume SM-like).

Calculate total amount captured. Mirror capture, self capture, evaporation, different species.

Properties of captured matter: size of SM nugget (hydrostatic equilibrium), surface temperature of nugget (isothermal?), optical depth.

Calculate signal strength and shape.

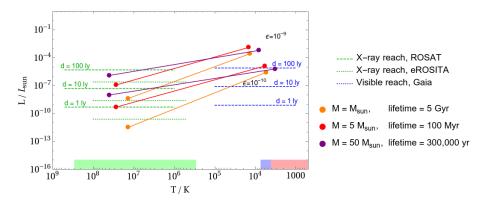
OPTICAL DEPTH OF NUGGET


	Optically thin	Optically thick
Thermal photons	Nugget cools via collisional processes e.g. bremsstrahlung	Nugget cools as blackbody with effective surface temperature
Converted X-rays	All X-rays escape	Most X-rays deposit energy as heating, while conversions in photosphere can escape.

7TH MAY 2019 10/13

(日) (部) (王) (王) (王)

RESULTS: SPECTRUM


Overall luminosity (are under curve) is a robust prediction, although some uncertainty in the shape.

7th May 2019 11/13

RESULTS: LUMINOSITIES

Two distinct thermal spectra – can plot separately on a Hertzsprung-Russell diagram:

7th May 2019 12/13

- Mirror sectors theoretically well-motivated.
- Mirror stars can efficiently capture interstellar matter, which leads to a signal in SM photons.
- Two thermal signatures: the temperature of the nugget and the temperature of the mirror star core.
- Weird signal faint, nearby, hot object with an X-ray signal.
 Close → parallax.

Back-up slides

▶ ▲ 臺 ▶ 臺 少へで 7th May 2019 14/13

PROFILE OF CAPTURED MATTER

Assume that the captured material is in isothermal hydrostatic equilibrium, in an *external* gravitational well.

Simplifying assumption, isothermal profile.

$$kT\frac{dn}{dr} = -\frac{GM(r)\,m\,n(r)}{r^2}$$

(Ignores captured matter gravitational self-interactions)

Solution given by

$$n(r) = Ce^{-\int A(r)dr}, \quad A(r) = \frac{GM(r)m}{kTr^2}$$
(1)

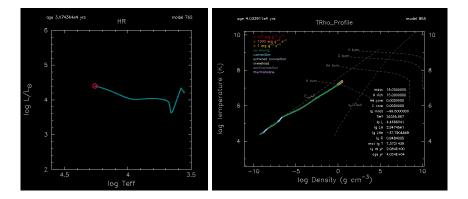
Virial theorem, characteristic radius:

$$r_{capture} = \sqrt{\frac{9kT}{4\pi G\rho_{mirror}m}}$$
(2)

15/13

MIRROR SECTORS AND MIRROR STARS

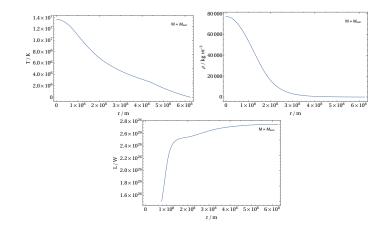
How to simulate a mirror star:


- Starting point, assume star is composed of mirror hydrogen and mirror helium.
- Understand different reaction rates and energy output; weaker weak interaction, higher deuterium binding energy, etc.
- Solve equations of stellar structure:

$$\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{r^2} \quad \frac{dM}{dr} = 4\pi r^2 \rho(r)$$
$$\frac{dL}{dr} = 4\pi r^2 \rho(r)\epsilon(r) \quad \frac{dT}{dr} = -\frac{3}{4ac} \frac{\kappa(r)\rho(r)}{T(r)^3} \frac{L(r)}{4\pi r^2}$$

• Understand mirror opacity in terms of fundamental parameters.

SM-LIKE MIRROR STARS


- Mirror stars are SM-like, i.e. same opacity, same reaction rates and energy output.
- Generate stellar profiles using MESA for different masses.

(日) (同) (三) (三)

SM-LIKE MIRROR STARS

Benchmark star with $M = M_{sun}$.

Similarly have profiles for pressure, opacity, composition, etc.

JACK SETFORD

MIRROR SECTORS AND MIRROR STARS

▶ ▲ 重 ▶ 重 の Q C 7th May 2019 18/13