Measurement of differential and production mode cross sections of the Higgs in decays to bosons using the ATLAS detector

> **Dr. Marc Bret Cano** on behalf of the ATLAS Collaboration Shanghai Jiao Tong University

> > Pheno 2019 Pittsburgh, USA

> > > May 6, 2019





May 6, 2019 1/3

# The Higgs Boson

- Existence of Higgs-like particle confirmed in 2012 with a mass of 125 GeV
- Bosonic decays of the Higgs key in discovery





# Introduction: Higgs Production/Decay at the LHC (arXiv:1610.07922v2)



- Largely dominated by gluon-gluon fusion
- Vector boson fusion is distinguished by the presence of widely separated jets in the event

| Decay channel | SM BR [%] with<br>m <sub>H</sub> =125.09 GeV |
|---------------|----------------------------------------------|
| H→bb          | 58.1                                         |
| H→WW          | 21.5                                         |
| H→ττ          | 6.26                                         |
| H→ZZ          | 2.64                                         |
| Н→үү          | 0.23                                         |
| H→µµ          | 0.022                                        |
| H→Zγ          | 0.154                                        |
| H→cc          | 2.88                                         |
| H→gg          | 8.18                                         |

Latest Results on Higgs Boson analyses

Results presented in this talk:

- ggF and VBF production cross-section measurement using  $H \rightarrow WW \rightarrow e\nu\mu\nu$  decays (36.1  $fb^{-1}$ )
- $VH, H \rightarrow WW \rightarrow \ell \nu \ell \nu$  (36.1  $fb^{-1}$ )
- $H \rightarrow \gamma \gamma$  differential cross-section and couplings measurement (79.8  $fb^{-1}$ )
- $H \rightarrow ZZ$  differential cross-section and couplings measurement (79.8  $fb^{-1}$ )

・ロト ・ 一下 ・ ト ・ ト ・ ト

#### $H \rightarrow WW \rightarrow e \nu \mu \nu$ : ggF and VBF production<sup>1</sup>



- Measurement of the ggF and VBF production cross-section
- Separate between two production modes using jet multiplicity of the event

• VBF:  $\geq$  2 jets

<sup>1</sup>Phys. Lett. B 789 (2019) 508

#### $H \rightarrow WW \rightarrow e \nu \mu \nu$ : Results





 The observed (expected) ggF and VBF signals have significances of 6.0 (5.3) and 1.8 (2.6) σ

< 日 > < 同 > < 回 > < 回

• Reasonable agreement with SM

#### $VH, H \rightarrow WW \rightarrow \ell \nu \ell \nu$ (arXiv:1903.10052)



# $VH, H \rightarrow WW \rightarrow \ell \nu \ell \nu$ : Analysis Strategy

#### WH analysis

• Three leptons and missing transverse energy coming from the neutrinos

#### **Two Signal Regions:**

- Z-dominated: one same-flavour Opposite-sign pair
- Z-depleted: No Same-flavour Opposite-sign
- BDTs used to discriminate against diboson and Top background

#### ZH analysis

• Four leptons, with a pair close to the Z boson mass

#### Two Signal Regions:

- One Same-flavour Opposite-sign pair: very good S/B (~2)
- Two Same-flavour Opposite-sign pair: dominated by  $ZZ \rightarrow 4\ell$  background, S/B (~0.4)
- ZZ Background shape estimated from MC and normalised in a control region

< ロ > < 同 > < 三 > < 三 >

#### $VH, H \rightarrow WW \rightarrow \ell \nu \ell \nu$ : Background estimation



- Dedicated control regions used to normalise the prompt lepton background
- Orthogonal to Signal region by reversing selection criteria

Dr. Marc Bret Cano

Latest Results on Higgs Boson analyses

May 6, 2019 9 / 29

#### $VH, H \rightarrow WW \rightarrow \ell \nu \ell \nu$ : Results





- BDT score results used to classify events in various bins
- Consistent with SM within  $1.5\sigma_{
  m cons}$

# Simplified template xsec (STXS)<sup>2</sup>

- Events categorised within a particular production mode
- Aim to maximise the sensitivity of measurements by choosing regions of phase space which minimise theoretical uncertainties
- All decay channels can be combined
- Results obtained for each production mode



< ロ > < 同 > < 回 > < 回 >

<sup>2</sup>https://arxiv.org/abs/1610.07922

#### $H \rightarrow \gamma \gamma$ : ATLAS-CONF-2018-028



- Large background, but excellent sensitivity ensured by very good photon efficiency and resolution
- Analysis categories designed to isolate out events from different production modes.

Dr. Marc Bret Cano

Latest Results on Higgs Boson analyses

May 6, 2019 12 / 29

# ${\rm H}{\rightarrow}~\gamma\gamma$ : STXS Stage-0 and 1



• Find good agreement with SM expectation within  $1\sigma$ 

< ロ > < 同 > < 三 > < 三 >

#### $H \rightarrow \gamma \gamma$ : Differential cross-sections





| Distribution                    | $p(\chi^2)$ with<br>Default MC Prediction |
|---------------------------------|-------------------------------------------|
| $p_{\mathrm{T}}^{\gamma\gamma}$ | 31%                                       |
| $ y_{\gamma\gamma} $            | 56%                                       |
| $p_{\mathrm{T}}^{j_1}$          | 88%                                       |
| $N_{b\text{-jets}}$             | 84%                                       |

 Cross-section measured differentially in dilepton p<sub>T</sub> and rapidity, leading jet p<sub>T</sub> and number of b-jets

Dr. Marc Bret Cano

Latest Results on Higgs Boson analyses

May 6, 2019 14 / 29

#### $H \rightarrow ZZ^* \rightarrow 4\ell$ : ATLAS-CONF-2018-018



- $\bullet$  The "golden channel": Very clean channel with high S/B
- Boosted decision tree used to suppress background and discriminate between production modes

Dr. Marc Bret Cano

Latest Results on Higgs Boson analyses

May 6, 2019 15 / 29

#### $H \rightarrow ZZ^* \rightarrow 4\ell$ : STXS Stage-0 and 1 and 2-D contour





Dr. Marc Bret Cano

Latest Results on Higgs Boson analyses

May 6, 2019 16 / 29

#### $H \rightarrow ZZ^* \rightarrow 4\ell$ : Differential fiducial cross-section



- xsec measured differentially in terms of the  $p_{T_{4\ell}}$  and jet multiplicity for the ggF production mode
- Compared observed results to NNLOPS and MadGraph5 predictions

Dr. Marc Bret Cano

May 6, 2019 17 / 29

#### Conclusions

- Various measurements of the Higgs boson presented
- Still fairly limited by statistics... but still a good fraction of the Run-2 dataset left to investigate
- So far all compatible with SM expectation
- As usual, stay tuned!

# **BACKUP SLIDES**

Dr. Marc Bret Cano

Latest Results on Higgs Boson analyses

May 6, 2019 19 / 29

э

<ロト < 同ト < ヨト < ヨト

# $H \rightarrow ZZ^* \rightarrow 4\ell$ : the golden channel

Many useful features:

- Large signal to background ratio (S/B  $\sim$  2) & excellent mass resolution ( $\sim 1-2\%$ )
- Main draw-back is the small branching ratio (~ 0.02%) → limited statistics

Analysis strategy:

- ATLAS uses invariant mass of the four-lepton system  $(m_{4\ell})$  as your observable
- Non-resonant background coming from ZZ (reduced via MVA)



- Leptons from the Z\* are low p<sub>T</sub> → more prone to background contamination
- Fake background estimated in Control regions

#### Performance of the LHC & the ATLAS detector



- The LHC & ATLAS has been working remarkably well, generally exceeded expectations
- Currently in shutdown until mid-end 2021

Dr. Marc Bret Cano

May 6, 2019 21 /

#### Higgs boson mass: Results



| Source                                              | Systematic uncertainty in $m_H~[{\rm MeV}]$ |
|-----------------------------------------------------|---------------------------------------------|
| EM calorimeter response linearity                   | 60                                          |
| Non-ID material                                     | 55                                          |
| EM calorimeter layer intercalibration               | 55                                          |
| $Z \rightarrow ee$ calibration                      | 45                                          |
| ID material                                         | 45                                          |
| Lateral shower shape                                | 40                                          |
| Muon momentum scale                                 | 20                                          |
| Conversion reconstruction                           | 20                                          |
| $H \rightarrow \gamma \gamma$ background modelling  | 20                                          |
| $H \rightarrow \gamma \gamma$ vertex reconstruction | 15                                          |
| $e/\gamma$ energy resolution                        | 15                                          |
| All other systematic uncertainties                  | 10                                          |
|                                                     |                                             |

Dr. Marc Bret Cano

May 6, 2019

#### Higgs boson mass: Summary



Current best result published in Phys. Lett. B 784 (2018) 345 = -23/2Dr. Marc Bret Cano Latest Results on Higgs Boson analyses May 6, 2019 23/29

#### Higgs Boson Production xsec: ATLAS-CONF-2019-005

• Obtained combining  $\gamma\gamma$ , ZZ\*, WW\*,  $\tau\tau$ ,  $b\bar{b}$  and  $\mu\mu$  final states



May 6, 2019 24 / 29

#### Higgs Boson Production xsec and BR ratios



# Higgs Boson Couplings



 Interpret the results in the κ framework as a function of the particle mass assuming no BSM contributions to total width



- Probing universal coupling strength factors for fermions (κ<sub>f</sub>) and bosons (κ<sub>V</sub>)
- Best fit shows values of κ<sub>f</sub> and κ<sub>V</sub>
   != 1.0, but compatible with SM within uncertainties

• • = • • = •

#### Higgs boson mass: per-event method $(ZZ \rightarrow 4\ell)$

- m<sub>4l</sub> signal distribution modelled as the convolution of the intrinsic Higgs boson lineshape and a four lepton invariant mass response function
- The response function gives the probability of measuring a value  $m_{4\ell}^{meas}$  for a truth mass  $m_{4\ell}^{true}$
- Validate the method by testing it with the Z boson

| Category  | $m_Z$ in simulation [GeV]      | $m_Z$ in data [GeV]     |
|-----------|--------------------------------|-------------------------|
| $4\mu$    | $91.19_{-0.41}^{+0.41}$        | $91.46^{+0.42}_{-0.41}$ |
| 4e        | $91.19^{+1.02}_{-1.03}$        | $91.75^{+1.08}_{-1.06}$ |
| $2\mu 2e$ | $91.18^{+1.11}_{-1.11}$        | $91.31^{+1.62}_{-1.33}$ |
| $2e2\mu$  | $91.19\substack{+0.90\\-0.90}$ | $92.49^{+0.91}_{-0.94}$ |
| Combined  | $91.19^{+0.34}_{-0.34}$        | $91.62^{+0.35}_{-0.35}$ |



# Off-Shell Analysis: Phys. Lett. B 786 (2018) 223



- Study off-shell production of Higgs boson at high mass  $ZZ \rightarrow 4\ell$  and  $2\ell\ell\nu\nu$  channels
- Assume same couplings in on-shell/off-shell regions to indirectly constrain Higgs boson total width

Dr. Marc Bret Cano

Latest Results on Higgs Boson analyses

May 6, 2019 28 / 29

#### Higgs boson mass: Phys. Lett. B 784 (2018) 345



- Combination of  $\gamma\gamma$  and  $4\ell$  final states
- Chosen for their excellent mass resolution

Dr. Marc Bret Cano

Latest Results on Higgs Boson analyses

May 6, 2019 29 / 29