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Outline
  Domain-Wall (DW) setup and brief review for 

localizing: gauge bosons, Higgs, fermions
 Fermion mass hierarchy
 Phenomenology 

https://indico.cern.ch/event/699148/contributions/2986240/

See my Pheno 2018 talk for extensive DW review
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DW 5D setup

 Consider a flat, non-compact extra dimension where:

 All fermions, gauge fields, and the Higgs are localized within certain 
domains along the 5th dimension 

 The mass hierarchy of the SM fermions can be resolved by the “Split 
Fermion Mechanism”, where the chiral components of the fermion 
fields are localized in different locations throughout the bulk

 The 5D metric is given by

Split fermion mechanism proposed by: Akani-Hamed, Schmaltz [hep-ph/9903417] 

ηMN=diag {+,−,−,−,−}; M ,N=0 ,1 ,2 ,3 , y
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DW gauge boson
 The 5D Lagrangian for a U(1) gauge field is given by                          where

∫ s( y)dy=∫ g5
−2( y)dy= 1

g4
2

Seminal Work in this direction: 
1) G. Dvali, M. Shifman, arXiv: 9612128
2) K. Ohta, N. Sakai, arXiv: 1004.4078

 The y-dependent gauge coupling confines the gauge fields according to 
the geometry of the configuration and is subject to

L=L5+LGF ,                             

LGF=−
s( y)
2ξ (∂μ A

μ− ξ
s( y)

∂ y(s( y)A y))
2

Relation to 4D gauge coupling:

s(±∞)→0Localization condition:

L5=− 1
4
s( y)F NM F NM=− 1

4
1

g5( y)
2 F

NM F NM

 The 5D vector AM is comprised of the 4D vector and scalar field 
components  AM (x , y)=(Aμ(x , y) , A y(x , y))
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DW gauge boson 
 Finding the general solution requires specification of the geometric 

function s(y)

s( y)= M

(cosh (mV y))
2 γ

• For the duration of this talk, I will use the solvable example:

• Where M, mV and γ > 0    

s(y) for M=mV=1, γ=3
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DW gauge boson 

Scalar KK-mode solution:

Vector KK-mode solution:

 After using this s(y) in the EOMs for the scalar and vector fields, the 
localized eigenfunctions and mass eigenvalues for the bound nth KK-
modes can be found for γ=3 

A y(x , y)=√45 g cosh (mV y)ψ
(1)(x)+√85 g cosh (mV y)sinh (mV y)ψ

(2)(x)

Aμ(x , y)=g Aμ
(0)(x)+2 g sinh (mV y)Aμ

(1)(x)+ g

√5
(5−4cosh2(mV y))Aμ

(2)(x)

g=√ 15mV

16M

Gauge coupling defined as:

(photon)

Mass eigenvalues obey:

mn
2=n(2γ−n)mV

2 ;n=0 ,1 , .. <γ
m1

2=5mV
2 m2

2=8mV
2

γ=3 

m1=√5/8m2
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DW Higgs field 
 To localize the Higgs field and the Higgs VEV, the same procedure is 

employed as in the gauge scenario

Higgs KK-mode solution:

s( y)= M

(cosh (mV y))
2 γ , For                                               and  γ=3, the KK-mode solution 

 for the real Higgs field component after expanding about the vacuum 
                                    is 

h(x , y)=h(0)(x)+2sinh (mV y)h
(1)(x)+ 1

√5
(5−4cosh (mV y)

2)h(2)(x)

L5
H=g 2 s[(DM H )† (DM H )− 1

2(H † H− v2

2 )
2]

H=(v+h+iφ)/√2 ,

(SM Higgs)
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DW and the Higgs mechanism 
 Extending the 5D Abelian Higgs model to the SM gauge group

                                         is accomplished by using the same s(y) for each 
gauge group, up to a normalization factor 
SU (3)C×SU (2)L×U (1)Y

SM gauge boson zero-mode masses:

mγ=mgluons=0 mW=
1
2
g 2 v mZ=

1
2
√g2

2+gY
2 v

SM gauge boson KK-mode masses:

mγ
(n)=mgluons

(n) =mn mW
(n)=√mn

2+mW
2 mZ

(n)=√mn
2+mZ

2

• After electroweak symmetry breaking, the masses are found to be
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DW fermions

ϕ0=
mϕ

√λ tanh (mϕ y)≈
mϕ

2 y
√λ

(near y=0)

 The 5D Lagrangian for a Dirac fermion decomposed into its ψL/R 
components and is coupled to the “kink-solution” φ0 is given by 

L5
F⊃ i ψ̄L γ

μ∂μψL+i ψ̄R γ
μ∂μψR - ψ̄L∂ yψR+ψ̄R∂ yψL+Y ϕ0(ψ̄LψR+ψ̄RψL)

and

 After using the KK expansion for the L/R handed fermion modes in LF
5 , 

the zero mode solutions to the EOM are found 

zero mode projected out!

ψL
(0)(x , y)=ψL(x)χL

(0)( y)≈ψL( x)[C L e
−mF

2 y2

2 ]

ψR
(0)(x , y)=ψR(x)χR

(0)( y)≈ψR(x)[C R e
mF

2 y2

2 ]= 0

DW fermion Background Kink

Kink center

5th Dimension

Left-handed 
zero mode:

Right-handed 
zero mode:
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DW fermion masses

LY=−Y u
ij Q̄ i H̃ u j−Y d

ij Q̄iH d j+ h.c.=−Y u
ij Q̄ L

i H̃ uR
j−Y d

ij Q̄L
i H d R

j+ h.c

 Extending to the SM case, the 5D Yukawa interaction for the quarks is

Q=Q L+ Q R

 The fields are decomposed into their chiral components

u=uL+uR

i , j = 1 , 2 , 3 H̃=iσ2His the generation index 

d=d L+d R

Quark doublet 
zero mode:

Up quark singlet 
zero mode:

Down quark 
singlet zero 

mode:
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DW fermion masses

Y eff
ij =Y u

ij∫χL
i(0)( y− yL)χR

j(0)( y− yR)d y

 The 4D effective Yukawa is found by integrating out the extra dimension
– The up-type quarks effective Yukawa couplings’ are 

 Therefore, the mass matrices for the up-type and down-type quarks are 

M u
ij=( v√2)Y u

ije−mF
2 (Δ Lij

u)2Up-type 
mass matrix:

Down-type 
mass matrix:

M d
ij=( v

√2)Y d
ij e−mF

2 (Δ Lij
d )2

 Comparing to measured fermion masses, the separation distance 
between the chiral fields can be found                           for exampleΔ L= yL− yR ,

mu≈M u
11=( v

√2)Y u
11e−mF

2 (Δ L11
u )2 ⟨h(0)(x)⟩= v

√2

Δ L11



12

 Since the up-type quark masses are relatively hierarchical, we make the 
assumption that                         which means that 

 In order to compare Mu
ij and Md

ij to the measured masses of the SM 
fermions, they are diagonalized by the unitary rotations:                                  
                       and similarly for L ↔ R 

uL
i →V L

ij uL
j ,

d L
i →W L

ij d L
j

V L
ij=V R

ij≈δij ,

Up-type :

Down-type:

diag {mu , mc , mt }=V L
† M uV R≈M u

diag {md , ms , mb }=W L
† M dW R≈V CKM

† M dV CKM

W L
ij=W R

ij≈V CKM
ij ,

Realistic fermion mass matrices

(i , j= 1 , 2 , 3)

 After finding        for all SM fermions, the localization position for 
chiral fields is defined as                      andy L=Δ L /2 y R=−(Δ L /2 )

Δ L

 This means the fermion mass hierarchy that extends over 13 
orders of magnitude difference can be reinterpreted as a milder 
hierarchy among the separation distances        , which are all of 
the same order!

Δ L
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Effective gauge interactions
 Interactions with the KK-modes of the gauge boson are described by

 Where the effective coupling is determined by the overlap between the 
fermion zero mode and the gauge nth KK-mode after integrating out the 
extra dimension: geff

(n)=g ∫(χL
(0)( y))2χ(n)( y)d y

L4⊃ Q g ψ̄Lγ
μ Aμ

(0)ψL+∑
n=1

∞

Q geff
(n) Aμ

(n) ψ̄Lγ
μψL

zero mode

1st  mode

2nd  mode

different  KK-mode gauge couplings

g(1)/g

g(2)/g

localization dependent coupling position!
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 The DW SM can be constrained by comparing the KK gauge boson W(2) 
to the LHC Run-2 ATLAS & CMS constraint on W'SSM

 Latest ATLAS Data(red line) at 13 TeV and 79.8 fb-1 puts a constraint at     
                       for SSM theory prediction(dotted line)

  SSM process in the narrow width approximation is                               , 
interpretation to ours for                       (solid line) places a bound of           
                          and is found from  

Phenomenology of KK W(2) boson

σ(q q̄ '→W ' )∝g 2

σ(q q̄ '→W (2)→ lv)=σ(q q̄ '→W '→ lv)( g eff
(2)

g )
2

≈0.2×σ(q q̄ '→W '→ lv)

W (2) KK-mode propagating

W(2)
q

q’

l

v

g eff
(2)/g≈1/√5

m(2)[TeV ]≥4.8

mW' [TeV ]≥5.6

ATLAS-CONF-2018-017 

SSM W`
2 nd KK W
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L4 ⊃∑

n=1

∞

Gμ
(n)(d̄ L s̄L b̄L)(V CKM

† g seff
(n)V CKM )γ

μ(d L

sL
bL
)

 In the SM FCNC effects are reduced by GIM mechanism and occur at 
loop level

Flavor Changing Neutral Currents 
(FCNC)

SM K-K Oscillation Tree level flavor violation via KK Gluon

s

d

d

s

q q

W

W

s

d

d

s

G(n)

 In the DW SM FCNC effects occur at tree level due to 
gauge coupling non-universality

 Largest contribution is due to KK Gluon interaction

(non-diagonal)
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 Following the procedure from
   with updated K-K meson oscillation data, constraints can be placed on 

the first KK gauge boson mass m1 (solid black line) 
● The ε parameter is a ratio of the gauge boson mass scale to the DW 

fermion width, this ratio determines the strength of the effective KK 
gauge coupling geff

(n) 

FCNC constraints
B. Lillie, J. Hewett, PRD 68, 116002 (2003)
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FCNC and LHC Run-2
 Combining these two constraints further narrows the allowed 

parameter region (green area) for m1, which is confined by both FCNC 
constraints (solid black line) and LHC Run-2 data (dashed black line) 
using  

 Interestingly, these combined constraints show two distinct regions
– For ε < 0.002 the LHC Run-2 constraint is more severe
– For ε > 0.002 the FCNC constraint is more severe

m1[TeV ]=√5 /8m2=3.78
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 Localize Gauge fields in 5D non-compactified flat space

 Reproduced SM mass hierarchy 

 FCNC/LHC data provided interesting KK gauge boson phenomenology 
possibilities

 1) The KK-mode of the SM gauge bosons are extremely heavy and 
unlikely to be produced at the LHC, while future FCNC measurements 
can reveal the existence of these heavy modes

 2) The width of the localized SM fermions is very narrow, leading to 
almost universal 4D KK-mode gauge couplings

Conclusions

(ε < 0.002)

(ε > 0.002)
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Back up slides

https://gprosser.itch.io/sisyphus
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DW Future directions
 Higgs KK phenomenology
 DW gravity sector 
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DW gauge boson 

 The 5D Lagrangian for the Abelian gauge field can be decomposed into

Lscalar=− 1
2
s A y□4 A y+

1
2
s ξ A y∂ y(

1
s
∂ y(s A y))

Lgauge=
1
2
s Aμ(ημ ν□4−(1−1

ξ )∂μ∂ν)A
ν− 1

2
Aμ∂ y(s∂ y A

μ)

5D scalar 
Lagrangian:

5D vector 
Lagrangian:

 Use the Kaluza-Klein (KK) mode decomposition for both fields in order 
to find the solutions to the y-dependent equations of motion (EOM)

A y(x , y)=∑
n=0

∞

η(n)(x)ψ(n)( y)Scalar KK-modes:

Vector KK-modes: Aμ(x , y)=∑
n=0

∞

Aμ
(n)(x)χ(n)( y)
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DW fermions
 A real scalar field is introduced in order to localize the fermions 

throughout the 5D bulk

L5=
1
2
(∂M ϕ)(∂M ϕ)−V (ϕ) , V (ϕ)=

mϕ
4

2λ
−mϕ

2ϕ2+ λ
2
ϕ4

 The “kink-solution,” which breaks translational invariance along the 5th 
dimension is given by 

ϕ0=
mϕ

√λ tanh (mϕ y)≈
mϕ

2 y
√λ

(near y=0)

 The 5D Lagrangian for a Dirac fermion decomposed into its ψL/R 
components and is coupled to φ is given by 

L5
F⊃ i ψ̄L γ

μ∂μψL+i ψ̄R γ
μ∂μψR - ψ̄L∂ yψR+ψ̄R∂ yψL+Y ϕ0(ψ̄LψR+ψ̄RψL)
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DW fermion masses 
and parameter choice

 The top quark Yukawa is fixed to                         according to its mass
                      and a mild hierarchy choice is assigned to all remaining 
Yukawa elements

 The CKM (and PMNS) matrix elements are from the latest PDG values
 We employ the same procedure for the leptons, where the normal

neutrino hierarchy is assumed and the rotation matrices are defined 
to be

Charged lepton 
rot. matrix:

Down-type 
rot. matrix:

Y u
33=Y t=0.995

mt [GeV ]=173 ,

~V L
ij=~V R

ij≈δij ,

~W L
ij=~W R

ij≈V PMNS
ij ,

Example ΔL
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