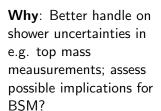


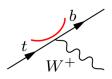
Resonances In Vincia

Helen Brooks and Rob Verheyen

Pythia Meeting - 8th April 2019

Outline

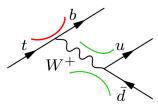

Part I: Resonance Decay Showers


Part II: Electroweak Showers

Part III: Interleaved Recursive Resonances

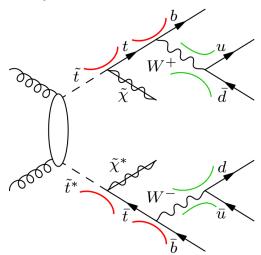
Coherence in Resonance Decays: motivation

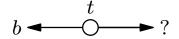
Goal: We want to understand what is the effect of coherence in showering off resonances that have decayed.



Coherence in Resonance Decays: motivation

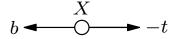
Goal: We want to understand what is the effect of coherence in showering off resonances that have decayed.


Why: Better handle on shower uncertainties in e.g. top mass meausurements; assess possible implications for BSM?


Coherence in Resonance Decays: motivation

Goal: We want to understand what is the effect of coherence in showering off resonances that have decayed.

Why: Better handle on shower uncertainties in e.g. top mass meausurements; assess possible implications for BSM?



Dipoles vs Antennae in Resonance Showers

- Dipole showers
 - Have a well-defined notion of "radiator".
 - ▶ In principle free to choose recoiler, e.g. W in $t \rightarrow Wb$
 - Neglect contribution from resonance as radiator (partition can actually become negative).
- Antenna showers
 - Are agnostic as to who is the radiator (coherence built into antenna function): must involve resonance.
 - Problem: Mandatory to preserve resonance mass (essential for matching). How should we treat the antenna between the resonance and its decay product(s)?

The Solution: "Resonance-Final" Antennae

- ▶ Treat antenna as initial-final: $A \rightarrow KX$, $a \rightarrow jkX'$, antenna function cast in terms the invariants s_{aj} , s_{jk} , s_{ak} , s_{AK} and masses m_a , m_j , m_k , m_{AK}
- Kinematics map:
 - Preserves invariant mass of resonance: $p_A = p_a$, and
 - Preserves invariant mass of system of recoilers: $(p_A - p_K)^2 = (p_a - p_i - p_k)^2$
 - ► Construct in rest frame of resonance, then boost back to lab frame by *p*_A
 - ▶ For each recoiler *i*, boost p_i by $p_{X'} p_X$

Defining the Kinematic Map

 \blacktriangleright Construct in A rest frame, and rotate such that K is along z.

$$\begin{split} \rho_k^\mu &= \left(E_k, 0, 0, \sqrt{E_k^2 - m_k^2}\right) \\ p_j^\mu &= \left(E_j, \sqrt{E_j^2 - m_j^2} \sin \theta, \sqrt{E_j^2 - m_j^2} \sin \theta, \sqrt{E_j^2 - m_j^2} \cos \theta\right) \\ p_X^\mu &= p_a^\mu - p_k^\mu - p_j^\mu \\ \text{where } E_j &= s_{aj}/2m_a, \ E_k = s_{ak}/2m_a, \\ \cos \theta &= \frac{2E_k E_j - s_{jk}}{2\sqrt{\left(E_k^2 - m_k^2\right)\left(E_i^2 - m_j^2\right)}} \end{split}$$

- ▶ Additional ambiguity: rotation about axis perpendicular to branching plane. Specify: in this frame, system X only recoils longitudinally.
- ▶ Rotate about z by ϕ (flatly sampled).
- Boost back to lab frame.

Other Ingredients

- Phase space factorisation: $d\Phi_{\rm ant} = \frac{1}{16\pi^2} \frac{\mathrm{d}s_{jk} \mathrm{d}s_{aj}}{\lambda^{1/2} (m_*^2, m_*^2, m_*^2)} \frac{\mathrm{d}\phi}{2\pi}$.
- Evolution variables:

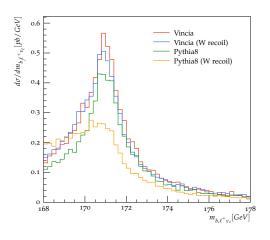
$$Q_{\text{evol}}^2 = \frac{s_{aj}s_{jk}}{s_{jk} + s_{AK}} \qquad \zeta = \frac{s_{jk} + s_{AK}}{s_{AK}} \qquad \text{(emissions)}$$

$$Q_{\text{evol}}^2 = \frac{(s_{jk} + 2m_q^2)(s_{aj} - m_q^2)}{s_{AK} + s_{jk} + 2m_q^2} \qquad \zeta = \frac{s_{ak}}{s_{AK}} \qquad \text{(splittings)}$$

▶ Antenna functions (obtain from massive FF by crossing symmetry):

$$a_{g,qq} = \frac{2s_{ak}}{s_{aj}s_{jk}} - \frac{2m_a^2}{s_{aj}^2} - \frac{2m_k^2}{s_{jk}^2} - \frac{1}{s_{AK}} \left(\frac{s_{jk}}{s_{aj}} + \frac{s_{aj}}{s_{jk}} \right)$$
 (emissions)

$$a_{g,qg} = \frac{2s_{ak}}{s_{aj}s_{jk}} - \frac{2m_a^2}{s_{aj}^2} - \frac{1}{s_{AK}} \left(\frac{s_{jk}}{s_{aj}} + \frac{s_{aj}}{s_{jk}} \frac{s_{AK} - s_{aj}}{s_{AK}} \right)$$
 (emissions)


$$a_{q,qg} = \frac{1}{2(s_{jk} + 2m_q^2)} \left(\frac{s_{ak}^2 + s_{aj}^2}{s_{AK}^2} + \frac{2m_q^2}{s_{jk} + 2m_q^2} \right)$$
 (splittings)

Results - Preliminary!

 $pp
ightarrow t ar{t}
ightarrow b ar{b} \ell^+
u_\ell \ell^- ar{
u}_\ell$ at 8 TeV .

Disclaimer: Not intended as physics result, just a comparison of parton shower.

- ► LO+PS
- Parton-level, no MPI or hadronisation
- ► No MECs

Part I: Mini-Summary

- Introduced "resonance-final" antennae:
 - ▶ Antenna function is a massive initial-final
 - Recoil is distributed between all downstream decay products in system.
- ► This has been implemented in Vincia for both QCD and QED.
- Next steps: systematically assess effects of coherence in e.g. direct top mass measurements.

Electroweak shower

- Spin-dependent couplings
- Particle masses
- Resonance branchings

Contents

- 1.Branching kernel calculation: Spinor-helicity formalism
- 2.Details of the shower implementation

Spinor-Helicity formalism

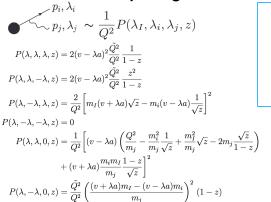
Helicity spinor definitions

$$u_{\pm}(p) = \frac{1}{\sqrt{2p \cdot k}} (\not p + m) u_{\mp}(k)$$

$$\epsilon_{\pm}^{\mu}(p) = \pm \frac{1}{\sqrt{2}} \frac{1}{2p \cdot k} \bar{u}_{\mp}(k) \not p \gamma^{\mu} u_{\pm}(k)$$

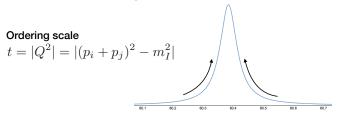
$$\epsilon_{0}^{\mu}(p) = \frac{1}{m} p^{\mu} - \frac{m}{p \cdot k} k^{\mu}$$

Creation operators

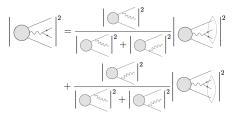

$$p_a, \lambda_a$$

Reference vector

$$k = (1, -\vec{e})$$


$$B_{\lambda_{I},\lambda_{i},\lambda_{j}}(p_{I},p_{i},p_{j}) = \left| \begin{array}{c} p_{i},\lambda_{i} \\ p_{j},\lambda_{j} \end{array} \right|^{2} / \left| \begin{array}{c} p_{I},\lambda_{I} \\ \end{array} \right|^{2}$$

Splitting functions



$$\frac{\lambda a}{m_j} \frac{1}{\sqrt{z}} \left[\frac{(v + \lambda a)m_I - (v - \lambda a)m_i}{m_j} \right]^2 (1 - z)$$
Gauge invariance: $P(z) \propto \left(\frac{p_i}{p_j} + \frac{p_i}{p_j} \right)^2$

Shower implementation

Spectator selection: Use selection probability

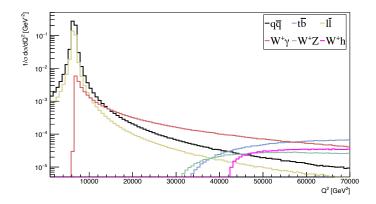
Overestimate determination

$$d\Phi_{\mbox{\tiny ant}} = \frac{1}{16\pi} ds_{ij} ds_{jk} \frac{d\varphi}{2\pi}$$

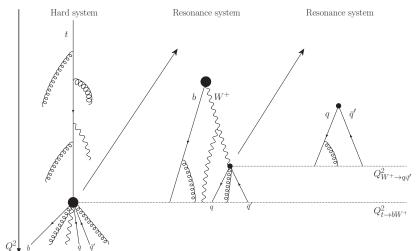
 $s_{ij} = 2p_i \cdot p_j$

Two problems:

- ~500 different branchings
- Incompatible with the phase space


Parameterize overestimate

$$\mathcal{O} = c_1 \frac{1}{Q^2} + c_2 \frac{1}{Q^2} \frac{(p_{IK}^0)^2}{s_{ij} + s_{ik} + m_i^2} + c_3 \frac{1}{Q^2} \frac{(p_{IK}^0)^2}{s_{ij} + s_{jk} + m_j^2} + c_4 \frac{m_I^2}{Q^4}$$


Solve coefficients by linear programming

Minimize
$$\sum_{i=1}^{n} (A\mathbf{c})_i - B_i$$
subject to $(A\mathbf{c})_i \ge B_i$ and $\mathbf{c} > 0$.

W+ Radiation spectrum

Recursive Resonances: The Concept

Recursive Resonances: In Practice

PartonLevel::next

- ► VinciaFSR::pTnext
- ▶ VinciaFSR::branch: branching accepted at pTWin
 - Generate kinematics, accept/reject step. Update event, partonSystems as normal.
 - ▶ if (resonanceDecay): call VinciaFSR::resonanceShower
 - Save current scale pTcutoff = pTWin
 - Create a new system iResSys in partonSystems
 - Call VinciaFSR::prepare for iResSys
 - Set isResonanceSys[iResSys] = true
 - Set up F-F and R-F antennae.
 - ▶ Set start scale from available phase space for decay.
 - while(pTnow > pTcutoff)
 - ► VinciaFSR::pTnext
 - VinciaFSR::branch
 - ▶ Merge system iResSys in partonSystems with mother system
 - Reset pTWin = pTcutoff

Summary

- ► Ready now:
 - Resonances now implemented in Vincia, with coherent "resonance-final" antennae for both QCD and QED.

- Coming soon:
 - ☐ Electroweak decays generated as part of the shower
 - ☐ Recursive treatment of resonance decays