

Quench protection studies on 11 T dipole and comparison with test results

Susana Izquierdo Bermudez, Gerard Willering

Acknowledgement for discussions and contributions:

Luca Bottura, Franco Julio Mangiarotti, Alejandro Fernandez Navarro, Ludovic Grand Clement, Fernando Menendez Camara, Francois Olivier Pincot, Felix Rodriguez Mateos, Frederic Savary, Juan Carlos Perez, Jan Petrik, Christian Scheuerlein, Emmanuele Ravaioli, Michal Maciejewski.

CERN. 11/01/2019. Review of 11 T dipole quench protection and electrical tests

Outline

- Protection design and reference parameters.
- Overview on quench protection test results.
- Summary and conclusions.

Outline

Protection design and reference parameters.

- Overview on quench protection test results.
- Summary and conclusions.

Baseline protection scheme

- Every cryo-assembly is composed by two 11 T x 5.5 m connected in series and protected by a cold diode.
- Each QH power supply is connected to two outer layer strips in series (i.e. 2 heater circuits per coil, 4 circuits per aperture, 16 circuits per 11 T full assembly.)
- U-shaped heaters with connections only in the magnet connection end (reduce the number of connections but worse voltage distribution in failure cases)

Outer layer heater design

Each aperture is protected with 4 quench heater circuits

- Heater geometry optimized to have a uniform quench in the magnet cross section and a propagation in between stations faster than 5 ms.
- High field and low field quench heater in series (better for redundancy)

"Standard" LHC quench heater power supply:

- Charging voltage: 900 V (± 450 V)
- Maximum current through the heaters: 150 A (instead of 80 A in the MB-LHC)
 - This means that the design was done for a max. heater circuit resistance (including leads) of 6 Ω (there is some margin here, see additional slides).
- Capacitance: 7.05 mF
- Heater power density: 85/136 W/cm²

Heater insulation scheme

Non-Impregnated heaters

Protection strategy

EDMS 1764166: Engineering Specification; 11T dipole Circuit - Powering and protection

The strategy to follow in case of a failure of the quench protection system is:

- If one quench heater power supply fails, the heater power supply will be replaced during the next access.
- If two quench heater power supplies fail, the beam is dumped and the heater power supply is replaced.
- If one out of the sixteen heater circuits fail, during next long shut down the magnet will be replaced.
- If more than two circuits fail the individual case needs to be studied.

Protection without failure

EDMS 1764166: Engineering Specification; 11T dipole Circuit - Powering and protection

Table 5. Simulated quench integral, hot-spot temperature, peak voltage to ground and peat turn to turn voltage at nominal and ultimate current for default conductor and protection parameters.

		SUPERMAGNET		ROXIE		TALES	
		I _{nom}	l _{ult}	I _{nom}	l _{ult}	I _{nom}	l _{ult}
Current	kA	11.85	12.85	11.85	12.85	11.85	12.85
Quench integral	MA ² s	15.7	16.8	15.9	16.9	15.8	16.2
Hot spot temperature	К	320	360	310	350	320	342
Peak voltage to ground	V	n.a.	n.a.	350	450	245	340
Peak turn to turn voltage	V	n.a.	n.a.	63	95	75	80

Assuming:

- 5 ms for quench detection + 10 ms for validation
- 5 ms of heater firing delay
- Heaters with nominal powering parameters, impregnated with the coil
- RRR = 100 and cu/sc = 1.15

Failure case analysis

EDMS 1764166: Engineering Specification; 11T dipole Circuit - Powering and protection

Table 10. Failure case analysis. Simulated quench integral, hot-spot temperature, peak voltage to ground and peak turn-to-turn voltage obtained for one failure or two simultaneous failures of QH circuits, at nominal and at ultimate current (TALES, Alejandro Fernandez Navarro).

		Nominal		1 circuit failure		2 circuits failure	
		I _{nom}	l _{ult}	I _{nom}	l _{ult}	I _{nom}	l _{ult}
Current	kA	11.85	12.85	11.85	12.85	11.85	12.85
Quench integral	MA ² s	15.8	16.2	16.1	16.4	16.2	16.5
Hot spot temperature	К	320	342	327	349	333	356
Peak voltage to ground	V	245	340	570	680	950	1070
Peak turn to turn voltage	V	75	80	80	90	90	95

Assuming:

- 5 ms for quench detection + 10 ms for validation
- 5 ms of heater firing delay
- Heaters with nominal powering parameters, impregnated with the coil
- RRR = 100 and cu/sc = 1.15

Overview on short model magnets tested

Magnet	COLLARED COIL	Coil	CONDUCTOR	cu/sc	Coil R at 300 K	RRR	HEATER TYPE	GLASS HEATER-COIL
					мΩ	293K/4K		ММ
CD101	CC101	106	RRP 108/127	1.22	423	66	GLUED	0.00
3P101	CC101	107	RRP 108/127	1.22	426	97	GLUED	0.10
SD102	CC102	106	RRP 108/127	1.22	423	66	GLUED	0.00
JF 102	CC102	108	RRP 132/169	1.22	407	185	GLUED	0.10
SD103	CC103	109	RRP 132/169	1.27	400	131	GLUED	0.00
3F 103	CC105	111	RRP 132/169	1.27	401	124	GLUED	0.10
	CC102	106	RRP 108/127	1.22	423	66	GLUED	0.00
	CC102	108	RRP 132/169	1.22	407	185	GLUED	0.10
DP101	CC102	109	RRP 132/169	1.27	400	131	GLUED	0.00
	CC105	111	RRP 132/169	1.27	401	124	GLUED	0.10
SD104	CC104	112	RRP 132/169	1.27	403	125	GLUED	0.08 (E-glass)
JF 104	CC104	113	RRP 132/169	1.27	403	115	GLUED	0.08 (E-glass)
	CC105	114	RRP 150/169	0.98	432	115	IMPREGNATED	0.00
3P105	CC105	115	RRP 150/169	0.97	436	110	IMPREGNATED	0.00
	CC104p	109	RRP 132/169	1.27	400	131	GLUED	0.00
DD102	CC104B	112	RRP 132/169	1.27	403	125	GLUED	0.08 (E-glass)
DP102		114	RRP 150/169	0.98	432	115	IMPREGNATED	0.00
	CCIUSB	115	RRP 150/169	0.97	436	110	IMPREGNATED	0.00
50106	CC106	116	RRP 150/169	0.97	449	103*	IMPREGNATED	0.00
3P100	CC100	117	RRP 150/169	0.97	450	100*	IMPREGNATED	0.00
CD107 CC107	120	RRP 108/127	1.19	413	190*	IMPREGNATED	0.00	
35107		121	RRP 108/127	1.19	413	190*	IMPREGNATED	0.00
CD100	CC100	119	RRP 108/127	1.19	411		IMPREGNATED	0.00
26103	CC103	123	RRP 108/127	1.19	409	* 296K/20K	IMPREGNATED	0.00

RED: numbers bellow specifications Final conductor

"Final" heater lay-out

More details on: https://espace.cern.ch/HiLumi/WP11/Shared%20Documents/tested_magnet_parameters.xlsx?Web=1

Outline

- Protection design and reference parameters.
- Overview on quench protection test results.

Quench heater delay

Aim:

- Determine precisely the quench onset time due to quench heater firing. Procedure:
- One heater strip is fired.
- Upon quench detection, rest of the strips and dump are fired to protect the magnet

Main outcome

- 0.1 mm increase of the glass insulation thickness between heater and coil increases the delay by 10 ms, in agreement with expectations.
- Similar delays for impregnated and glued heaters if there is not additional layers of insulation between heater and coil.

•

- 0.00 mm: Coils 106&109
- 0.08 mm E glass: Coils 112&113
- 0.10 mm S2 glass: Coils 107, 108 & 111

Coils 114-117

Quench integral studies

Aim:

 Study the quench heater efficiency and quench propagation in machine relevant conditions (without dump)

Procedure:

 All heaters are fired, and dump resistor is delayed by 1 s.

Main outcome

- Large spread on measured quench integral, due to the difference in conductor properties (well understood).
- Measured current decay can be used to derive the hot spot temperature under adiabatic assumptions.

T_{hot} based on quench integral tests,

assuming 5 ms for detection, 10 ms for validation and 5 ms for heater firing delay

			I _{NOM} (11	I _{NOM} (11.85 кА)		I _{ULT} (12.85 кА)	
MAGNET	Cu/SC	RRR293K/20K	QI	T _{ADIAB}	QI	T _{ADIAB}	
			[MA2s]	[K]	[MA2s]	[K]	
DP101	1.22-1.27	66-185	16.1	285-335			
SP105	0.97	112	15.1	341			
SP106	0.97	103	14.8	335			
SP107	1.19	190	17.1	325			
SP109	1.19	190*	17.0	325	17.7	365	

*Assumed RRR, measurements not available yet.

Minimum quench energy

Aim:

• Verify that the heaters are able to protect the magnet at all current levels.

Procedure:

• Magnet is ramped to a given current. Quench heater voltage progressively increased to find the minimum required to induce a quench.

Main outcome

- Quench heaters can induce a quench in the magnet with half of the nominal energy density at 1 kA.
- Bellow that current level, the magnet is self protected.

Quench heater performance at Inom

- Heater strips were designed accounting for some margin for leads resistance/manufacturing parameters.
 - Based on the current parameters, quench heater current can increased from 150 A to 200 A.
- The increase of the heater nominal powering will have a small impact on the delay (less than 2 ms)

Impact of the heater current on the quench heater onset for the nominal heater to coil insulation lay out (heaters impregnated with the coil).

Quench integral with enhanced QH parameters

- The impact on performance was tested by powering heaters in coil 119 with 200 A.
- Resistance growth in the coil powered with 200 A is 2 ms faster than in the rest of the coils, confirming the low impact of an increase of the heater power density.
- Quench integral decreased by only 0.1 MIITs, which corresponds to a decrease on T_{hot} of 5 K. If all coils are powered with enhanced parameters, T_{hot} would decrease by about 10 K.

SP100 with onbound bostor poro	Outer layer heaters			
SF109 with enhanced heater paran	Coil 123	Coil 119		
6011109		(nominal)	(enhanced)	
Peak current	(A)	150	200	
Total Resistance Heater Circuit	(Ω)	6	4.5	
RC	(ms)	42	32	
Peak power density (HF/LF)	(W/cm^2)	85/136	242/196	
Heater peak temperature (HF/LF)	(K)	120/160	155/200	

Experience from High MIITs studies in SP106

Two type of quenches:

High MIITs natural quenches

- Magnet ramped to quench, protected only with outer layer quench heaters.
- Every step, the firing of the heaters is delayed by 3 ms up to a maximum of 40 ms.

HT Inter-Layer Provoked

- Magnet ramped to I_{nom} protected only with outer layer quench heaters.
 - Quench provoked at nominal current with one of the inter-layer quench heaters, using the minimum required power to start a quench. Every step, the firing of the heaters is delayed by 10 ms.

Experience from High MIITs studies in SP106

Experience from High MIITs studies in SP106

Confidence on the adiabatic estimate of the hot spot

- Pole turns and coil blocks are instrumented with voltage taps.
- Since in SP106 the quench start location is block 3, actual hot spot temperature cannot be determined based on resistive voltage (only the average block temperature).
- Nevertheless, temperature estimates of the pole turn (where quench starts 10-20 ms later) can be used to validate the adiabatic approach.

SP106 High MIITs tests, temperature of the pole turn

Physical limits for T_{hot}

- The 420 K limit found in SP106 as the safe limit for protection, it is very close to the glass transition temperature of our resin (CTD 101K).
- 350 K was set as our design limit in order to have some margin.

[Beatriz Del Valle Grande, 2018, CERN Polymer LAB]

- Protection design and reference parameters.
- Overview on quench protection test results.
- Summary and conclusions.

Summary (1/2)

- The baseline protection scheme for the 11 T magnet relays on outer layer quench heaters impregnated with the coil.
 - In case of installing the heaters after coil impregnation, the extra amount of insulation between heater and coil is a critical parameters since every 0.1 mm increases the heater delay by 10 ms.
- Systematic protection tests were done along the short model program, confirming the values predicted by models.
- Quench heaters are able to quench the magnet at all current levels.
- An increase of the heater power density (I_{QH} = 200 A instead of 150 A) would have a modest increase on the protection performance (2 ms faster heaters, 10 K lower T_{hot})

Summary (2/2)

- Expected hot spot temperature in the 11 T at nominal operation conditions is 320 K.
- If the heaters are 10 ms slower, the hot spot would increase to 370 K.
- At ultimate current, we will be close to 400 K (+ 20-40 K), which is just slightly below the 420 K reached in SP106 without degradation.
- In case of heater failure (2 circuits out of 16), hot spot will be 15 K higher.
- We never studied experimentally protection under failure cases, but it will be done in SP109

Closing remarks

- Remark 1: there are a significant number of uncertainties on quench simulations, we don't expect to be more precise than 20 K in the estimation of the hot spot temperature, but the same assumptions are used for High MIITs tests on SP106 and the evaluation of the impact of additional delay on baseline operation conditions.
- Remark 2: These numbers have 3 ms (15 K) of margin since we assume 5 ms for heater firing delay (what we always see in SM18) but according to MPE this should be 2 ms for the machine.
- Remark 3: We are in a rather steep a rather steep area in terms of delay-hot spot, and variation of copper content gives a large impact (± 10 K for a copper to superconductor ratio 1.15 ± 0.05).

Additional slides

References

- ASC-2018: "Quench Protection Study of a 11 T Nb₃Sn Model Dipole for the High Luminosity LHC" (High temperature tests in SP106)
- SP106
 - https://edms.cern.ch/document/2026033/1
- SP107
 - https://edms.cern.ch/document/2026033/1
- 11 T dipole Circuit Powering and protection; Engineering Specification; EDMS 1764166
 - Needs to be updated with the latest test results (SP106 and SP107).

Impact on hot spot temperature (2)

Susana Izquierdo Bermudez

Impregnated vs. Non-impregnated heaters

If the amount of insulation between heater and coil is the same, impregnated (114&115) and non impregnated (106&109) heaters have a similar quench delay time

Susana Izquierdo Bermudez

Detection

Time required to reach the 100 mV detection threshold during training as compared to the THEA model for a quench happening in the pole turn.

Susana Izquierdo Bermudez

Failure case analysis 11 T

https://indico.cern.ch/event/549979/contributions/2263234/

[A. Giannopulos and A. M. Fernandez Navarro]		Peak voltage to ground(V)	Peak turn to turn voltage(V)	T _{max} (K)
	ROXIE (1x11 T magnet)	352(without quench back)	78	318
Nominal	TALES (1x11 T magnet)	260(with quench back)	75	325
	TALES (2x11 T magnet)	260(with quench back)	75	325
Worst case scenario heater wiring option 1	ROXIE (1x11 T magnet)	1001 (with quench back) 1480 (without quench back)	85	355
Coil 1, A2 Coil 1, A1	TALES (1x11 T magnet)	860 (with quench back) 1500 (without quench back)	90	355
Coil 2, A2 Coil 2, A1	TALES (2x11 T magnet)	950(with quench back) 1570 (without quench back)	90	339
Worst case scenario heater wiring option 2	ROXIE (1x11 T magnet)	701 (without quench back) 1060 (without quench back)	85	355
Coil 1, A2 Coil 1, A1	TALES (1x11 T magnet)	750 (with quench back) 1100 (without quench back)	85	356
Coil 2, A2 Coil 2, A1	TALES (2x11 T magnet)	950(with quench back) 1500 (without quench back)	95	339

Additional slides

TOTAL = 32 Voltage Taps for the Cryo-Assembly

HL-LHC PROJE

32

Quench heater circuit resistance

- At the time of the heater design there were "large" uncertainties:
 - Lack of experience on the production of copper plated heaters, not clear what we were going to be able to achieve in terms of RRR, total thickens, uniformity...
 - It was not clear the length of the heater powering leads, i.e., the additional resistance to be added to the heater circuit.
- We went for a conservative approach, designing the heaters with margin to be sure that the heater current was at least 150 A (100-150 W/cm²) \rightarrow R_{max} = 6 Ω
- Based on the experience from the 1st prototype magnet, we have 2 Ω of margin for leads and all additional resistance in the heater.

Quench heater resistance for the heaters installed in the 1st 11 *T porotype magnet*

Company	Circuit Name	Resistance RT (Ω)	Resistance 1.9 K (Ω)
Company	Nominal	5.81	3.48
	YT 111	5.82	3.99
Technomec	YT 112	5.85	4.04
	YT 121	5.43	4.01
	YT 122	5.92	4.03
Trackwise	YT 211	5.43	3.77
	YT 212	5.37	3.69
	YT 221	5.43	3.73
	YT 222	5.43	3.73

