Direct Detection of Dark Matter

Yonit Hochberg

The Obvious Big Ones

CRESST darkside two-phase argon TPC for Dark Matter Direct Detection

(Etc etc etc...)

The Less Obvious Ones

Not the classical WIMP searches.

Diverse efforts.

Gaining traction.

Israel involvement.

Beyond the WIMP

Beyond the WIMP

Detection Blueprints

Dark matter particle comes in Hits a target in the lab System reacts Measure the reaction

Direct Detection

Current Experiments

Current Experiments

Looking for nuclear recoils: think billiard balls

Lose sensitivity @ O(GeV) masses

New Avenues

Light dark matter: scatter off electrons!

Energy guideline

Dark matter scattering: kinetic energy $m_{\rm DM}v^2 \sim 10^{-6}m_{\rm DM}$

New proposals

Lots of activity

New proposals

Highlight the ones Israel is involved in

#1: Semiconductors

Idea: DM excites an electron from the valence to conduction • band

[Essig, Mardon, Volansky, PRL 2012]

 $m_{\rm DM} \gtrsim {\rm MeV}$

E.g. SuperCDMS, DAMIC, TEXONO, SENSEI executing •

(Sub-Electron Noise Skipper-CCD Experimental Instrument)

Silicon charge-coupled device (CCD)

Multiple measurement of the charge in the pixel Low electronic noise Can resolve individual electrons

SENSEI

First results from surface run @ Fermilab: 0.02 gram-days exposure

YH @ Town Hall, Dec. 2018

SENSEI

- Currently: 0.09 grams installed @ MINOS (results soon).
- Next step: 10 gram @ SNOLAB in early 2019, run for a year.
- Final phase: 100 gram phase, will likely run for around a year.

~20 people from 4 institutions.

Locally @ TAU: Tomer Volansky, Erez Etzion, Liron Barak

Experiment fully funded.

Fermilab

NIVERSITY OF OREGON

Diamond

• Diamond is a semiconductor too!

- First paper to appear shortly [Yu, YH, Kurinsky, Cabrera, 1812:sooon]
- Ongoing R&D in SuperCDMS; prototype planned to be built

#2: 2D Targets (Graphene)

 Idea: DM scatters with valence electrons, deposits enough energy, ejects electron → detect

 Electron follows incoming dark matter direction. Naturally gives forward/backward discrimination (separates signal from background)

Directional info!

[YH, Kahn, Lisanti, Tully, Zurek, PLB 2017]

Implement in PTOLEMY

(Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield)

Experiment to detect relic neutrinos via capture on tritium.

Use their (un-tritiated) graphene (~0.5 kg).

PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter

[PTOLEMY collaboration, arXiv:1808.01892]

PTOLEMY

• O(50) people, O(20) institutions

```
Locally @ HUJI:
YH
```


- Will sit in LNGS
- R&D Prototype @ Princeton
- EU synergy proposal planned for next year

Supported by: SIMONS FOUNDATION

#3: Superconductors

- Ground state = Cooper pairs; Binding energy (gap) $\sim meV$ \implies $m_{DM} \sim keV$
- The idea:

DM scatters with Cooper pairs, deposits enough energy,

breaks Cooper pairs, creating excitations \rightarrow detect

• Current challenge: to achieve low threshold O(meV) sensors

[YH, Zhao, Zurek, PRL 2015; +w/ Pyle, JHEP 2015]

2017]

Superconductors

- Best reach but more futuristic (low thresholds)
- DoE HEP-Quantum Information Science (QIS) grant awarded this year for R&D of low threshold TESs @ LBNL
- Directional detection? (work in progress)

OF JERUSALEM

Superconducting Nanowires

- QIS: single-photon detectors
- Demonstrated low dark counts and low thresholds (sub-eV)
- Use as target + sensor for DM detection
- Tiny devices can already play meaningful role

Toy prototype @ Berggren lab, MIT

4.3 nanogram, 10K seconds:

places strongest terrestrial bounds for sub-eV dark photon absorption!

Superconducting Nanowires

• Extend to lower energy thresholds and large area nanowires

[YH, Charev, Naam, Berggren, 1812.sooon]

- DoE HEP-QIS grant to Berggren @ MIT for development of nanowires for another purpose
- Recently submitted dedicated grant w/ BNL

Quantum Sensing meets HEP

Quantum Sensing for High Energy Physics

Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

Organized by the Coordinating Panel for Advanced Detectors of the Division of Particles and Fields of the American Physical Society Activity in the USA and starting in Europe

What about Israel??

March 27, 2018

Quantum Sensors for Fundamental Physics, St. Catherine's College, Oxford, UK

16 October - 17 October 2018 Oxford, UK

30 Mar 2018

1803.11306v1 [hep-ex]

#4: Color Centers

<u>Idea:</u> DM knocks an ion in a crystal and creates a color-center defect which can be detected

 $E_{\rm threshold} \sim \mathcal{O}(10 \text{ eV})$ $\Rightarrow m_{\rm DM} \gtrsim 10' \text{s of MeV}$

[Budnik, Chesnovsky, Slone, Volansky, 2017]

Color Centers

- In R&D phase
- Zoom in on number of defects in specific crystals (end of 2019).
- Prototype several years away.

Locally @ TAU & WIS: Tomer Volansky, Ori Chesnovsky & Ranny Budnik

In Short

Israel highly involved in diverse efforts.

Thanks!

Backup

New theory ideas

- •
- Weakly coupled WIMPs
- Asymmetric dark matter
- Freeze-in dark matter
- SIMPs [YH, Kuflik, Volansky, Wacker, 2014 ; YH, Kuflik, Murayama, Volansky, Wacker, 2015]
- ELDERs

.

•

- Forbidden dark matter
- Co-Decaying dark matter
- Co-scattering dark matter

[Pospelov, Ritz, Voloshin 2007; Feng, Kumar 2008]

[Nussinov, 1985; Kaplan, Luty, Zurek, 2009]

[Hall, Jedamzik, March-Russell, West, 2009]

[Kuflik, Perelstein, Rey-Le Lorier, Tsai, 2016 & 2017]

[Griest, Seckall, 1991; D'Agnolo, Ruderman, 2015]

[Dror, Kuflik, Ng, 2016]

[D'Agnolo, Pappadopulo, Ruderman, 2017]

... Are abundant

By no means a comprehensive list

Energy guidelines

Dark matter scattering: kinetic energy $m_{\rm DM}v^2 \sim 10^{-6}m_{\rm DM}$

Energy guidelines

Dark matter absorption: all the mass-energy $m_{\rm DM}$

YH @ Town Hall, Dec. 2018

Energy guidelines

Two (mass ranges) for the price of one :-)

Directional Info?

Lose directional information if detecting secondaries

secondary electrons

e.g. semiconductors,

superconductors

DM

Retain directional information if observe primary!

Graphene

conduction

electron

DM

• 2D material with vanishing bandgap

• To eject electron: $E_{eject} = E_b + \Phi \sim eV$ Binding energy Work function O(eV), tunable $k_x = \frac{44}{3} \frac{4}{3} \frac{4}{$

 <u>The idea</u>: DM scatters with valence electrons, deposits enough energy, ejects electron → detect

[YH, Kahn, Lisanti, Tully, Zurek, PLB 2017]

Directional info

Electron follows incoming dark matter direction. Naturally gives forward/backward discrimination (separates signal from background)

Electron detected

12 hours later

[YH, Kahn, Lisanti, Tully, Zurek, PLB 2017]

Design Concept

- ~0.5 kg graphene = area of Jerusalem old city = billions of cm^2 crystals
- Compact geometry: large mass via many stacks

 $\sim 10 \mathrm{m} \times 10 \mathrm{m} \times 10 \mathrm{m}$

Design Concept

- Electron ejected from plane into vacuum, electric fields drift it to FET/calorimeter, detected
- Velocity reconstructed from time-of-flight; monitor conductivity of graphene to determine when electron ejected → directionality

area $\sim \mathrm{cm}^2$

[Essig, Mardon, Slone, Volansky, 1608.02940]

Color Centers

H₂-like Molecule

Superconducting Nanowires

Toy prototype @ Berggren lab, MIT

4.3 nanogram, 10K seconds (WSi):

places strongest terrestrial bounds for sub-eV dark photon absorption!

Carbon Nanotubes for WIMPs

Carbon Nanotubes (e)

[Cavota, Luchetta, Polosa, 1706.02487]

Scintillators

[Derenzo, Essig, Massari, Soto, Yu, 1607.01009]

Superfluid helium

Dark matter couples to collective modes (phonons, rotons, maxons)

Not great for hidden photons

[Schutz, Zurek, 2016; Knapen, Lin, Zurek, 2016]

Downside?

Metals are shiny

In-medium effects are substantial – photon picks up mass.

If kinetically-mixed hidden photon mediator:

Dirac materials

- Think of as 3D bulk graphene
- Complementary to superconductors
- Photon remains massless

[**YH,** Kahn, Lisanti, Zurek, Grushin, Ilan, Griffin, Liu, Weber, Neaton, PRD 2017]

Dirac materials

Competing effects:

Lose in phase space, win with reduced optical response

Scattering Reach

Dirac materials

Experimental setup -- work in progress :-)

Topological properties? Collect charge/phonons? Excitation concentration?

[YH, Kahn, Lisanti, Zurek.....]