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Outline

Lecture 1:  Introduction and basic formalism

Probability, statistical tests, parameter estimation.

Lecture 2:  Discovery

Quantifying discovery significance and sensitivity

Systematic uncertainties (nuisance parameters)

Lecture 3:  Exclusion limits

Frequentist and Bayesian intervals/limits

Lecture 4:  Further topics

More on Bayesian methods / model selection

The look-elsewhere effect
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The Bayesian approach to limits

In Bayesian statistics need to start with ‗prior pdf‘ p(q), this 

reflects degree of belief about q before doing the experiment.

Bayes‘ theorem tells how our beliefs should be updated in

light of the data x:

Integrate posterior pdf p(q | x) to give interval with any desired

probability content.  

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from
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Bayesian prior for Poisson parameter

Include knowledge that s ≥0 by setting prior p(s) = 0 for s<0.

Could try to reflect ‗prior ignorance‘ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead

a flat prior for, say, the mass of the Higgs boson, this would 

imply a non-flat prior for the expected number of Higgs events.

Doesn‘t really reflect a reasonable degree of belief, but often used

as a point of reference;

or viewed as a recipe for producing an interval whose frequentist

properties can be studied (coverage will depend on true s). 
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Bayesian interval with flat prior for s

Solve numerically to find limit sup.

For special case b = 0, Bayesian upper limit with flat prior

numerically same as classical case (‗coincidence‘). 

Otherwise Bayesian limit is

everywhere greater than

classical (‗conservative‘).

Never goes negative.

Doesn‘t depend on b if n = 0.
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Priors from formal rules 

Because of difficulties in encoding a vague degree of belief

in a prior, one often attempts to derive the prior from formal rules,

e.g., to satisfy certain invariance principles or to provide maximum

information gain for a certain set of measurements.

Often called ―objective priors‖ 

Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent

possible extreme cases).   

In a Subjective Bayesian analysis, using  objective priors can be an 

important part of the sensitivity analysis.
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Priors from formal rules (cont.) 

In Objective Bayesian analysis, can use the intervals in a

frequentist way, i.e., regard Bayes‘ theorem as a recipe to produce

an interval with certain coverage properties.  For a review see:

Formal priors have not been widely used in HEP, but there is

recent interest in this direction; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high

energy physics, arxiv:1002.1111 (Feb 2010)
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Jeffreys‘ prior

According to Jeffreys’ rule, take prior according to

where

is the Fisher information matrix.

One can show that this leads to inference that is invariant under

a transformation of parameters.

For a Gaussian mean, the Jeffreys‘ prior is constant; for a Poisson 

mean m it is proportional to 1/√m. 
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Jeffreys‘ prior for Poisson mean

Suppose n ~ Poisson(m).  To find the Jeffreys‘ prior for m,

So e.g. for m = s + b, this means the prior p(s) ~ 1/√(s + b), which 

depends on b.  But this is not designed as a degree of belief  about s.
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Bayesian limits with uncertainty on b

Uncertainty on b goes into the prior, e.g.,

Put this into Bayes‘ theorem,

Marginalize over b, then use p(s|n) to find intervals for s

with any desired probability content.

Framework for treatment of nuisance parameters well defined;

choice of prior can still be problematic, but often less so than

finding a ―non-informative‖ prior for a parameter of interest.
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Comment on priors

Suppose we measure n ~ Poisson(s+b), goal is to make inference

about s.

Suppose b is not known exactly but we have an estimate b

with uncertainty sb.

For Bayesian analysis, first reflex may be to write down a 

Gaussian prior for b,

But a Gaussian could be problematic because e.g.

b ≥ 0, so need to truncate and renormalize;

tails fall off very quickly, may not reflect true uncertainty.

ˆ
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Gamma prior for b
What is in fact our prior information about b?  It may be that 

we estimated b using a separate measurement (e.g., background 

control sample) with

m ~ Poisson(tb)              (t = scale factor, here assume known)

Having made the control measurement we can use Bayes‘ theorem

to get the probability for b given m,

If we take the ―original‖ prior p0(b) to be to be constant for b ≥ 0,

then the posterior p(b|m), which becomes the subsequent prior 

when we measure n and infer s, is a Gamma distribution with:

mean =  (m + 1) /t

standard dev. = √(m + 1) /t
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Gamma distribution
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Frequentist approach to same problem

In the frequentist approach we would regard both variables

n ~ Poisson(s+b)

m ~ Poisson(tb)

as constituting the data, and thus the full likelihood function is

Use this to construct test of s with e.g. profile likelihood ratio

Note here that the likelihood refers to both n and m, whereas

the likelihood used in the Bayesian calculation only modeled n.
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Bayesian model selection (‗discovery‘)

no Higgs

Higgs

The probability of hypothesis H0 relative to an alternative H1 is 

often given by the posterior odds:

Bayes factor B01 prior odds

The Bayes factor is regarded as measuring the weight of 

evidence of the data in support of H0 over H1.

Interchangeably use B10 = 1/B01
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Assessing Bayes factors

One can use the Bayes factor much like a p-value (or Z value).

There is an ―established‖ scale, analogous to our 5s rule:

B10 Evidence against H0

--------------------------------------------

1 to 3 Not worth more than a bare mention

3 to 20 Positive

20 to 150 Strong

> 150 Very strong

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.

Will this be adopted in HEP?
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Rewriting the Bayes factor

Suppose we have models Hi, i = 0, 1, ...,

each with a likelihood

and a prior pdf for its internal parameters 

so that the full prior is

where                         is the overall prior probability for Hi. 

The Bayes factor comparing Hi and Hj can be written 
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Bayes factors independent of P(Hi)

For Bij we need the posterior probabilities marginalized over

all of the internal parameters of the models:

Use Bayes

theorem

So therefore the Bayes factor is

The prior probabilities pi = P(Hi) cancel.

Ratio of  marginal 

likelihoods
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Numerical determination of Bayes factors

Both numerator and denominator of Bij are of the form

‗marginal likelihood‘

These can be very challenging to compute.  Methods include:

Harmonic Mean (and improvements)

Importance sampling

Parallel tempering (~thermodynamic integration)
Nested sampling

...

See e.g. 

Nested sampling -- see: www.inference.phy.cam.ac.uk/bayesys
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The Look-Elsewhere Effect
Eilam Gross and Ofer Vitells, arXiv:10051891

Suppose a model for a mass distribution allows for a peak at

a mass m with amplitude m.

The data show a bump at a mass m0.

How consistent is this 

with the no-bump (m = 0) 

hypothesis?
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p-value for fixed mass

Eilam Gross and Ofer Vitells, arXiv:10051891

First, suppose the mass m0 of the peak was specified a priori.

Test consistency of bump with the no-signal (m = 0) hypothesis 

with e.g. likelihood ratio 

where ―fix‖ indicates that the mass of the peak is fixed to m0.

The resulting p-value 

gives the probability to find a value of tfix at least as great as

observed at the specific mass m0.
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p-value for floating mass

Eilam Gross and Ofer Vitells, arXiv:10051891

But suppose we did not know where in the distribution to

expect a peak.

What we want is the probability to find a peak at least as 

significant as the one observed anywhere in the distribution.

Include the mass as an adjustable parameter in the fit, test 

significance of peak using

(Note m does not appear

in the m = 0 model.)
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Distributions of tfix, tfloat

Eilam Gross and Ofer Vitells, arXiv:10051891

For a sufficiently large data sample, tfix ~chi-square for 1 degree

of freedom (Wilks‘ theorem).

For tfloat there are two adjustable parameters, m and m, and naively

Wilks theorem says tfloat ~ chi-square for 2 d.o.f.

In fact Wilks‘ theorem does 

not hold in the floating mass 

case because on of the 

parameters (m) is not-defined 

in the m = 0 model.

So getting tfloat distribution is 

more difficult.
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Trials factor
We would like to be able to relate the p-values for the fixed and

floating mass analyses (at least approximately).

Gross and Vitells (arXiv:10051891) argue that the ―trials factor‖ 

can be approximated by

where ‹N› = average number of local maxima of L in fit range and

is the significance for the fixed mass case.

So we can either carry out the full floating-mass analysis (e.g. use 

MC to get p-value, or do fixed mass analysis and apply a 

correction factor.
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Wrapping up lecture 4

Bayesian methods for limits

Difficult issues surrounding choice of prior

Marginalize over nuisance parameters (MCMC)

Bayesian model selection

Bayes factors = posterior odds if assume prior odds 1

= ratio of marginalized likelihoods

Can be very difficult to compute.

Look-elsewhere effect

Correct with trials factor or e.g. use floating mass 

analysis.
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Extra slides
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MCMC basics:  Metropolis-Hastings algorithm

Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density

e.g. Gaussian centred

about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how 

each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical

errors larger than naive

The proposal density can be (almost) anything, but choose

so as to minimize autocorrelation.  Often take proposal

density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  

if not, only take the step with probability 

If proposed step rejected, hop in place.
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Metropolis-Hastings caveats

Actually one can only prove that the sequence of points follows

the desired pdf in the limit where it runs forever.

There may be a ―burn-in‖ period where the sequence does

not initially follow

Unfortunately there are few useful theorems to tell us when the

sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it‘s converged, try starting from a different

point and see if the result is similar.


