Neutrino Cosmology Weighing the Ghost Particle with the Universe

Elena Giusarma

Center for Computational Astrophysics

Assistant Professor at Michigan Tech University, from August

Beyond 2019

University of Warsaw

Outline

- Cosmic Neutrinos
- Effects on cosmological observations
- Constraints on neutrino masses
- Machine Learning application

What is the Universe composed of?

INST

TUTE

Neutrino: the invisible particle

$v_e \quad v_\mu \quad v_\tau$ Massless particles in the Standard Model

Neutrino: the invisible particle $v_e \quad v_\mu \quad v_\tau$

T. Kajita

Neutrinos are massive particle

Where do neutrinos come from?

Nuclear Reactors

Particle Accelerators

Sun

Supernovae (Stellar Collapse) **SN 1987A**

Earth Atmosphere (Cosmic Rays)

Earth Crust (Natural Radioactivity)

Accelerators in astrophysical sources

Early Universe **Indirect Evidence**

Why Study Neutrinos?

They are the only direct evidence for Beyond Standard Model physics!

Why Study Neutrinos?

They are the only direct evidence for Beyond Standard Model physics!

Cosmology

- * They provide information on the evolution of the Universe.
- * They are the second most abundant particles in the Universe.
- * They are the the first and only known form of dark matter until now.
- * They leave key signatures on different cosmological probes.
- * Through precise cosmological measurements, we can **derive constraints on the sum of neutrino masses**.

CMB and LSS: Sum

Spectrum

CMB Temperature

Neutrino mass effect on CMB

Neutrinos alter background and perturbation evolution:

Background: matter-radiation equality delayed and angular diameter distance changed (compensated by acting on other parameters, e.g H₀)

Perturbations: early-ISW at intermediate scales and damping of small scales perturbations

Neutrino mass effect on CMB

CMB Lensing

NST

Neutrino clustering

Dark Matter

a=0.02

https://franciscovillaescusa.github.io/neutrinos.html

Credit: Francisco Villaescusa-Navarro

Neutrino mass effect on LSS

The small-scale matter power spectrum, k>k_{fs}, is reduced in presence of massive neutrinos:

 \bigcirc On larger scales ν s cluster in the same way as cold dark matter

 \bigcirc Free-streaming vs do not cluster

$$k_{\rm fs} \simeq 0.018 \ \Omega_m^{1/2} \left(\frac{M_\nu}{1 \,{\rm eV}}\right)^{1/2} \ h \ {\rm Mpc}^{-1}$$

Cosmological parameter estimation

CURRENT COSMOLOGICAL BOUNDS ON NEUTRINO MASSES

Σm_{ν} limits from cosmology

6 standard cosmological parameters + neutrino masses

The bounds on neutrino properties depend on

✓ The combination of cosmological data used

Planck collaboration (including Elena Giusarma), 2015

Σm_{ν} limits from cosmology

6 standard cosmological parameters + neutrino masses + geometry of the universe The bounds on neutrino properties depend on

- ✓ The combination of cosmological data used
- ✓ The assumed cosmological model (problem of parameter degeneracies)

How to improve Σm_{ν} limits?

We need to improve the use of P(k,z)!

How to improve $\sum m_{\nu}$ limits? <u>We need to improve the use of P(k,z)!</u>

Galaxy power spectrum:

 $P_g(k,z) \approx b^2(k)P(k,z)$

CMB lensing-galaxy cross-correlations

Planck CMB Lensing

BOSS high-z galaxy survey

95% C.L. neutrino mass constraints (eV):

Elena Giusarma et al., PRD 2018

95% C.L. neutrino mass constraints (eV):

Elena Giusarma et al., PRD 2018

95% C.L. neutrino mass constraints (eV):

Elena Giusarma et al., PRD 2018

95% C.L. neutrino mass constraints (eV):

Elena Giusarma et al., PRD 2018

2019 state Σm_{ν} from cosmology Cosmological upper limits on the sum of neutrino masses 10⁰ Planck Collaboration 2018 Vagnozzi, E. Giusarma et al., PRD 2017 CMB (2018) 3 NH < 0.26 $\Sigma m_{ u}(eV)$ $\sqrt{\Delta m_{\rm atm}^2} \approx 0.05 \ {\rm eV}$ < 0.21 0.08 < 0.19 0.08 (eV) 2 (eV 0.3 0.06 < 0.12 0.3 10⁻¹ 0.1 0.1 0.01 0.1 0.001 E. Giusarma et al., PRD 2018 m₀ (eV) **0.1 eV** $\lesssim \Sigma m_v^{0.001}$ Inverted Hierarchy **0.06 eV** $\lesssim \Sigma m_v$ — Normal Hierarchy 10⁻³ 10⁻² 10⁻¹ $m_{ m lightest}(eV)$

The role of N-body simulations in Cosmology

- Theoretical tool for calculations in the non-linear regime (important on small scales).
- Connect the cosmological initial conditions (simple problem) with the universe today (complex problem).

Simulations are essential for:

- 1. Make prediction of theory:
- Internal structure of Halos
- Galaxy formation models
- Baryonic acoustic oscillations in the matter distribution
- Neutrino clustering
-

2. Generate mock data

- **3. Compute the Covariance Matrix**
- 4. Data Analysis
- 5. Optimization of observational strategies

Villaescusa-Navarro SIMS

The Quijote simulations

- A set of 34500 N-body simulations
- 1000 Mpc/h
- 512³ DM particles (+ 512³ v particles)
- z = {0, 0.5, 1, 2, 3}
- Latin hypercube with 4000 simulations in the { Ω_m , Ω_b , h, n_{s_s} , σ_s } hyperplane
- More than 5 trillion particles at a single redshift
- 750 Tb, 18M cpu hours
- Publicly available at https://github.com/franciscovillaescusa/Quijotesimulations

Villaescusa-Navarro Flatiron Institute CCA

Neutrino Simulations

We run 100 N-body simulations in a box of 1000 Mpc/h

Neutrino Simulations

We run 100 N-body simulations in a box of 1000 Mpc/h

símulations?

FLATIRON INSTITUTE

Deep learning

- Part of machine learning methods based on artificial neural networks.
- Breakthroughs in processing images, videos, speeches and audio
- Composition of non-linear transformation of the data.
- Goal: Learn useful representations, features, directly from data.

Deep learning

- Part of machine learning methods based on artificial neural networks.
- Breakthroughs in processing images, videos, speeches and audio
- Composition of non-linear transformation of the data.
- Goal: Learn useful representations, features, directly from data.

Simple single layer Neural Network

• Consists of a linear combination of input through a nonlinear function: z = Wx + b

a = f(z)

Deep learning

- Part of machine learning methods based on artificial neural networks.
- Breakthroughs in processing images, videos, speeches and audio
- Composition of non-linear transformation of the data.
- Goal: Learn useful representations, features, directly from data.

Simple single layer Neural Network

- Consists of a linear combination of input through a nonlinear function: z = Wx + b

CNN

 Neural Network with a convolution operation instead of matrix multiplication in at least one of the layers

a = f(z)

Deep learning application

Large Scale Structure S.Ravanbakhsh et al. (2016) Gravitational lensing Y.D.Hezaveh et al. (2017)

CMB S.He et al. (2018)

 N-body
 N-body

 with massless
 Input N-body simulations

 neutrinos: Σm_v=0.000
 N-body

 fine tune the hidden parartle15eV

 Test: Input N-body simulations with unknow

Preliminary results: E. Giusarma, He, Reyes, Villaescusa-Navarro, Ho

Predicting massive neutrino simulations

- ✓ 100 N-body simulations without neutrinos as input and 100 N-body simulations with massive neutrinos as target ($\Sigma m_v=0.15 \text{eV}$).
- ✓ Each simulation consists of 130 million particles in a volume of 1,000 Mpc/h on each side.

Predicting massive neutrino simulations

- ✓ 100 N-body simulations without neutrinos as input and 100 N-body simulations with massive neutrinos as target ($\Sigma m_v=0.15 \text{eV}$).
- ✓ Each simulation consists of 130 million particles in a volume of 1,000 Mpc/h on each side.
- ✓ Each simulation is separated into 4,000 sub-cubes of size 33,000 voxels corresponding to regions of size around 62.5 Mpc/h.

Predicting massive neutrino simulations Deep learning: Convolutional neural network

Prediction

Preliminary results: Elena Giusarma, He, Reyes, Villaescusa-Navarro, Ho

Neutrino Cosmology- E. Giusarma

800

1000

600

200

400

 h^{-1} Mpc

Predicting massive neutrino simulations Deep learning: Convolutional neural network

Results: Summary statistics

Two-point correlation function: $\xi(|\mathbf{r}|) = \langle \delta_A(\mathbf{r}') \delta_B(\mathbf{r}' + \mathbf{r}) \rangle$

Results: Bispectrum

Looking at non-gaussian information

Neutrino Cosmology- E. Giusarma

Questions and Challenges

- It seems like the model is predicting quite well, and quite fast.
- Why does it work?
- How can we interpret the model learnt in ML?
- Do we understand where the information is coming from?
- Can we deduce what are the important features to predict cosmological simulations correctly?
- Can we understand the physics underpinning?

ML to predict faster standard and non standard cosmological simulation

- Neutrino simulations within a mass range.
- Modified gravity simulations.
- N-body simulations with generic non-Gaussian initial conditions.
- Hydrodynamical simulations

in order to

- Study the impact of non-standard parameters on standard cosmological simulations.
- Understand the physics underpinning.
- Deduce the important features to predict cosmological simulations correctly.
- Make prediction of theories.

Summary

• Cosmological data can be used to constrain neutrino properties, $\approx 0.05 \text{ eV}$ particular the absolute scales of neutrino masses.

 $\approx 0.009 \text{ eV}$

utrino masses leave key signatures in cosmological servables.

- Cosmology provides tightest constraints on sum of v masses, $\Sigma m_v \leq 0.12 0.15 \text{ eV}$ (assuming ΛCDM).
- It is time to start worrying about scale-dependent galaxy bias when using galaxy clustering measurement.
- ML potential tool to solve major problems in cosmology.

Thank you!

Backup Slides

Cosmology in 2020

CMB experiments

- Ground based: CMB S4, SO
- Satellites: LiteBIRD, CORE.

Large-scale structure surveys

- SDSS: 3 million of objects, 3-D map of the Universe
- DESI: 10 million of galaxies, a 3-D map of the Universe
- DES: 100 million of galaxies, 3-D map of the Universe
- LSST: 20 billion galaxies, 3-D map of the Universe
- Euclid: space mission
- SKA: black holes and pulsar
- WFIRST: space mission

ML to extract more information from the cosmological survey

Integrate traditional statistical methods with modern ML models.

Predict cosmological parameters directly from the distribution of matter

Why convolutional?

Convolution is a process where the network tries to label the input signal by referring to what it has learned in the past.

- CNN consists of an input and an output layer, as well as multiple hidden layers.
- The hidden layers consist of convolutional layers, RELU layer i.e. activation function, pooling layers, fully connected layers and normalization layers.

Degeneracies

 Definition: When two (or more) variables are correlated, it is conventional to say that they are degenerate with the other parameter(s).

- This is both "good" and "bad". The "bad" part is that the parameter are allowed to take any value along the degeneracy direction. The "good" news is that, if A and B are degenerate, even if there is no experiment that can constrain parameter A, you can improve limits on the allowed values of A indirectly, by designing an experiment that can constrain parameter B.
- Note that this is **not an intrinsic property of the parameters themselves**, but of their posterior distributions: we will see that two parameters might be degenerate in one experiment (CMB) but not in other experiment (CMB+BAO)

Cosmological parameter estimation

The measurements in cosmological datasets are translated to likelihoods. The total likelihood, assuming the measurements of the experiments are not correlated (usually the case), is the product of individual likelihoods.

$$\mathscr{L} \propto \exp(-\chi^2/2)$$

$$\chi^2 = (D-T)^{t} C^{-1} (D-T)$$

- D = vector of data measurements
- **C** = covariance matrix

T =theory vector generated at each MCMC step

Tritium β decay, $0\nu 2\beta$ and Cosmology

Future sensitivities on neutrino masses

Probe	Potential sensitivity (short term)	Potential sensitivity (long term)
CMB	0.4-0.6	0.4
CMB with lensing	0.1-0.15	0.04
CMB + Galaxy Distribution	0.2	0.05-0.1
CMB + Lensing of Galaxies	0.1	0.03-0.04
$CMB + Lyman-\alpha$	0.1-0.2	Unknown
CMB + Galaxy Clusters	_	0.05
CMB + 21 cm	_	0.0003-0.1

Table 1. Future probes of neutrino mass, as well as their projected sensitivity to neutrino mass. Sensitivity in the short term means achievable in approximately 5-7 years, while long term means 7-15 years.

Hannestad, Progr. Part. Nucl. Phys. 65 (2010) 185

New approach

Cross-Correlation between CMB lensing and galaxy over-density:

$$C_{\ell}^{kg} = \int_{z_0}^{z_1} dz \frac{H(z)}{\chi^2(z)} W^k(z) f_g(z) P_{mg}\left(k = \frac{\ell}{\chi(z)}, z\right)$$

$$W^{k}(z) = \frac{3\Omega_{m,0}}{2c} \frac{H_{0}^{2}}{H(z)} (1+z)\chi(z) \frac{\chi_{CMB} - \chi(z)}{\chi_{CMB}}$$
 Kernel for CMB lensing converge

 $P_{mg}(k, z) = b_{cross}(k) P_{mm}(k, z)$ Matter-galaxy 3D cross- power spectrum

Lensing-Galaxy Angular Power Spectra

10⁻⁶ • Deviation from prediction, particularly at large scales • Deficit seen in other $\overleftarrow{\breve{C}}_{10^{-7}}$ Planck lensing analyses. Deficit also seen in DES-SPT lensing analysis. Model Planck x CMASS 10⁻⁸ 100 300 200 60 40C ℓ

Pullen et al. MNRAS 2015

68% and 95% CL allowed regions in the $(\Sigma m_{\nu}$, H_0) plane.

HO: distance to the last scattering surface changes

$$\chi = c \int_0^{z_{\text{dec}}} \frac{dz}{\sqrt{\omega_r (1+z)^4 + \omega_m (1+z)^3 + (1-\frac{\omega_m}{h^2})}}$$

Di Valentino, E. Giusarma, et al., Phys. Rev. D, 2016

What is the advantage of b(k)?

We can recover the information on the matter power spectrum at non-linear scales and obtain better constraints on the cosmological parameters which are affected by scale-dependent bias of the tracers.

We can apply this method to future surveys of galaxies

