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What is the Universe composed of?
Cosmic neutrino background: energy fraction

Dark Energy
68%

Cold Dark Matter
27%

H and He
4%

Stars
0.5%

Neutrinos
0.15% - 0.3%

Metals
0.03%

Dark Energy 
68%

Cold dark matter  
27%

H and He 
4%

Stars 
0.5%

Metals 
0.03%

Neutrinos 
0.1-0.3%
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Neutrino: the invisible particle

Massless particles in the Standard Model
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��Neutrinos are massive particle Colin Hill 
IAS/CCANeutrino Mass Hierarchy
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atmospheric 
oscillations

solar 
oscillations

Minimum total mass: ~60 meV ~100 meV

What new physics is responsible for neutrino masses?

Fundamental physics from CMB lensing

  T. Kajita            A. B. McDonald

“For the discovery of neutrino oscillations, 
which shows that 

NEUTRINOS HAVE MASS.”

Neutrino Oscillations

Neutrino: the invisible particle
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IAS/CCANeutrino Mass Hierarchy

26Credit: Hyper-Kamiokande

atmospheric 
oscillations

solar 
oscillations

Minimum total mass: ~60 meV ~100 meV

What new physics is responsible for neutrino masses?

Fundamental physics from CMB lensing



Georg Raffelt, MPI Physics, Munich Colloquium, UNSW, Sydney, 4 March 2014

Where do neutrinos come from?

Earth Atmosphere 
(Cosmic Rays)

Nuclear Reactors

    Particle Accelerators

✓

✓
Supernovae 
(Stellar Collapse) 
 SN 1987A

✓

✓

Sun✓

✓

✓✓ Earth Crust 
(Natural Radioactivity)

Accelerators in 
astrophysical 
sources

Early Universe 
Indirect Evidence



Why Study Neutrinos?

They are the only direct evidence for Beyond Standard Model  
physics!
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Why Study Neutrinos?

They are the only direct evidence for Beyond Standard Model  
physics!

Cosmology 
They provide information on the evolution of the Universe. 

They are the second most abundant particles in the Universe. 

They are the the first and only known form of dark matter until 

now. 

They leave key signatures on different cosmological probes.   

 Through precise cosmological measurements, we can derive 
constraints on the sum of neutrino masses.
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CMB Temperature 

Large-Scale Structure (LSS)

Over-density fields

� =
⇢� ⇢0
⇢0

⇠(r) = h�(x)�(x+ r)i

“probability of seeing structure”, can be recast
in terms of the overdensity 

The correlation function is simply the real-space 
2-pt statistic of the field 

Its Fourier analogue, the power spectrum is 
defined by

P (k) = h�(k)�(k)i

By analogy, one should think of “throwing down” 
Fourier modes rather than “sticks”

Power spectrum

from statistical 
isotropy

from statistical 
homogeneity

�2(k) =
k3P (k)

2⇡2

Power spectrum often 
written in 
dimensionless form 

h�(k1)�(k2)i = (2⇡)3�D(k1 � k2)P (k1)

Matter Power Spectrum 
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Power Spectrum 

1 Mpc=3.1×1022 m 
h=0.67

Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` � 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-⇤CDM theoretical spectrum best fit to the Planck

TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` � 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-⇤CDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization e�ciencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization e�ciency at 143 ⇥ 143, c

EE

143, derived
from the EE spectrum is about 2� lower than that derived from
T E (where the � is the uncertainty of the T E estimate, of the
order of 0.02). This di↵erence may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters di↵erently in EE and T E. We have investi-
gated ways of correcting for e↵ective polarization e�ciencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization e�ciencies fixed to the e�ciencies ob-
tained from the fits on EE:

⇣
c

EE

100

⌘
EE fit

= 1.021;
⇣
c

EE

143

⌘
EE fit

=

0.966; and
⇣
c

EE

217

⌘
EE fit

= 1.040. The CamSpec likelihood, de-
scribed in the next section, uses spectrum-based e↵ective polar-
ization e�ciency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization e�ciency estimates
(which essentially di↵ers by applying to EE the e�ciencies
given above, and to T E the e�ciencies obtained fitting the T E

spectra,
⇣
c

EE

100

⌘
TE fit

= 1.04,
⇣
c

EE

143

⌘
TE fit

= 1.0, and
⇣
c

EE

217

⌘
TE fit

=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ⇤CDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization e�ciencies, we find small shifts in the base-⇤CDM
parameters compared with ignoring spectrum-based polariza-
tion e�ciency corrections entirely; the largest of these shifts
are +0.5� in !b, +0.1� in !c, and +0.3� in ns (to be com-
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Planck Collaboration: Cosmological parameters

Fig. 1. Planck foreground-subtracted temperature power spectrum (with foreground and other “nuisance” parameters fixed to their
best-fit values for the base ⇤CDM model). The power spectrum at low multipoles (` = 2–49, plotted on a logarithmic multi-
pole scale) is determined by the Commander algorithm applied to the Planck maps in the frequency range 30–353 GHz over
91% of the sky. This is used to construct a low-multipole temperature likelihood using a Blackwell-Rao estimator, as described
in Planck Collaboration XV (2014). The asymmetric error bars show 68% confidence limits and include the contribution from un-
certainties in foreground subtraction. At multipoles 50  `  2500 (plotted on a linear multipole scale) we show the best-fit The
CMB spectrum computed from the CamSpec likelihood (see Planck Collaboration XV 2014) after removal of unresolved foreground
components. This spectrum is averaged over the frequency range 100–217 GHz using frequency-dependent di↵use sky cuts (re-
taining 58% of the sky at 100 GHz and 37% of the sky at 143 and 217 GHz) and is sample-variance limited to ` ⇠ 1600. The light
grey points show the power spectrum multipole-by-multipole. The blue points show averages in bands of width �` ⇡ 31 together
with 1� errors computed from the diagonal components of the band-averaged covariance matrix (which includes contributions
from beam and foreground uncertainties). The red line shows the temperature spectrum for the best-fit base ⇤CDM cosmology. The
lower panel shows the power spectrum residuals with respect to this theoretical model. The green lines show the ±1� errors on the
individual power spectrum estimates at high multipoles computed from the CamSpec covariance matrix. Note the change in vertical
scale in the lower panel at ` = 50.
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` � 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-⇤CDM theoretical spectrum best fit to the Planck

TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` � 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-⇤CDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization e�ciencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization e�ciency at 143 ⇥ 143, c

EE

143, derived
from the EE spectrum is about 2� lower than that derived from
T E (where the � is the uncertainty of the T E estimate, of the
order of 0.02). This di↵erence may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters di↵erently in EE and T E. We have investi-
gated ways of correcting for e↵ective polarization e�ciencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization e�ciencies fixed to the e�ciencies ob-
tained from the fits on EE:
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= 1.040. The CamSpec likelihood, de-
scribed in the next section, uses spectrum-based e↵ective polar-
ization e�ciency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization e�ciency estimates
(which essentially di↵ers by applying to EE the e�ciencies
given above, and to T E the e�ciencies obtained fitting the T E

spectra,
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=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ⇤CDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization e�ciencies, we find small shifts in the base-⇤CDM
parameters compared with ignoring spectrum-based polariza-
tion e�ciency corrections entirely; the largest of these shifts
are +0.5� in !b, +0.1� in !c, and +0.3� in ns (to be com-
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Neutrino mass effect on CMB
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Peaks position shifted

First peak suppressed 
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Neutrinos alter background and perturbation evolution: 

Background: matter-radiation equality delayed and angular diameter distance changed 
(compensated by acting on other parameters, e.g H0)  
Perturbations: early-ISW at intermediate scales and damping of small scales perturbations



Neutrino mass effect on CMB

12

Figure 5. The e↵ect of massive neutrinos on the CMB lensing potential power spectrum C��
L . The

fractional change in C��
L for a given value of

P
m⌫ is shown relative to the case for zero neutrino mass.

Projected constraints on C��
L for a Stage-IV CMB experiment are shown for

P
m⌫ = 100 meV. Here we

have approximated all of the neutrino mass to be in one mass eigenstate and fixed the total matter density
⌦mh2 and H0. The 1� constraint for

P
m⌫ is approximately 45 meV for lensing alone and drops to 16 meV

when combined with other probes.

3.5). The comoving volume probed by eBOSS will be nearly ten times that probed by the BOSS galaxy
survey (though at lower sampling density).

The success of BOSS not only led to the eBOSS program, but has largely inspired the concept of DESI. DESI
is a proposed wide-field spectroscopic survey, to be conducted on a 4-m class telescope to study dark energy.
DESI represents one of the top priorities for new O�ce of Science Cosmic Frontiers e↵orts as identified in
the recent “Rocky III” report; CD-0 approval was granted in September 2012. The preliminary DESI survey
design covers 14,000 deg2 with spectroscopic observations of LRGs (0.6 < z < 1.0), ELGs (0.6 < z < 1.5),
and quasars (1 < z < 3.5) for direct clustering and Lyman-↵ forest. The density and e↵ective volume
probed by DESI will far exceed either BOSS or eBOSS. The details of the survey specifications are provided
in Ref. [40].

As a natural consequence of large spectroscopic BAO programs such as BOSS, eBOSS, and DESI, clustering
in the density field is sampled across a wide range of k modes over a very large volume. As explained in
Section 1.3, the signature of neutrinos appears as a characteristic suppression of power below certain scales in
the matter power spectrum. E↵ort within the BOSS collaboration has primarily centered on reconstructing
the broad-band power spectrum to extract information about BAO, redshift space distortions, and bias

Community Planning Study: Snowmass 2013

Abazajian et al.,  Astropart. Phys.,2015 
Neutrino Cosmology- E. Giusarma
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Neutrino clustering

Credit: Francisco Villaescusa-Navarro
https://franciscovillaescusa.github.io/neutrinos.html

https://franciscovillaescusa.github.io/neutrinos.html


Neutrino mass effect on LSS
The small-scale matter power spectrum, k>kfs, is reduced in presence of massive neutrinos: 

On larger scales νs cluster in the same way as cold dark matter 
Free-streaming νs do not cluster  
The growth rate of CDM and baryon fluctuations is reduced

Neutrino Cosmology- E. Giusarma

+ non-linear calculations: additional suppression at large k
    see e.g. Viel et al. 2010, Villaescusa-Navarro et al. 2013

Large scales Small scales

6

release [39, 90] are included. We consider a combina-
tion of the high-` (30  `  2508) TT likelihood, as
well as the low-` (2  `  29) TT likelihood based on
the CMB maps recovered with Commander: we refer to
this combination as PlanckTT . We furthermore include
the Planck polarization data in the low-` (2  `  29)
likelihood, referring to it as lowP . Our baseline model,
consisting of a combination of PlanckTT and lowP, is
referred to as base .

In addition to the above, we also consider the high-`
(30  `  1996) EE and TE likelihood, which we refer
to as highP . In order to ease the comparison of our re-
sults to those previously presented in the literature, we
shall add high-` polarization measurements to our base-
line model separately, referring to the combination of base
and highP as basepol . Due to possible residual system-
atics in the datasets, which are still being analyzed by
the Planck collaboration, the results obtained here with
the inclusion of high-` polarization measurements should
be regarded as less conservative and thus should be in-
terpreted with more caution. For the purpose of clarity,
we have summarized our nomenclature of datasets and
their combinations in Tab. II.

All the measurements described above are analyzed by
means of the publicly available Planck likelihoods [91]. 5

When considering a prior on the optical depth to reion-
ization ⌧ we shall only consider the TT likelihood in
the multipole range 2  `  29. We do so for avoid-
ing double-counting of information, see Sec. III E. Of
course, these likelihoods depend also on a number of nui-
sance parameters, which should be (and are) marginal-
ized over. These nuisance parameters describe, for in-
stance, residual foreground contamination, calibration,
and beam-leakage (see Refs. [39, 91]).

CMB measurements have been complemented with ad-
ditional probes which will help breaking the parameter
degeneracies discussed. These additional datasets in-
clude large-scale structure probes and direct measure-
ments of the Hubble parameter, and will be described in
what follows. We make the conservative choice of not
including lensing potential measurements, despite mea-
suring M⌫ via lensing potential reconstruction is the ex-
pected target of the next-generation CMB experiments.
This choice is dictated by the observation that lensing
potential measurements via reconstruction through the
temperature 4-point function are known to be in tension
with the lensing amplitude as constrained by the CMB
power spectra through the Alens parameter [39] (see also
[92–95] for relevant work).

B. Galaxy power spectrum

Once CMB data is used to fix the other cosmological
parameters, the galaxy power spectrum could in princi-

5 www.cosmos.esa.int/web/planck/pla

ple be the most sensitive cosmological probe of massive
neutrinos among those exploited here. Sub-eV neutri-
nos behave as a hot dark matter component with large
thermal velocities, clustering only on scales below the
neutrino free-streaming wavenumber kfs [24, 26]:

kfs ' 0.018 ⌦1/2

m

✓
M⌫

1eV

◆1/2

h Mpc�1
. (10)

On scales below the free-streaming scale (or, correspond-
ingly, for wavenumbers larger than the free-streaming
wavenumber), neutrinos cannot cluster as their thermal
velocity exceeds the escape velocity of the gravitational
potentials on those scales. Conversely, on scales well
above the free-streaming scale, neutrinos behave as cold
dark matter after the transition to the non-relativistic
regime. Massive neutrinos leave their imprint on the
galaxy power spectrum in several di↵erent ways:

• For wavenumbers k > kfs, the power spectrum in
the linear perturbation regime is subject to a scale-
independent reduction by a factor of (1 � f⌫)2,
where f⌫ ⌘ ⌦⌫/⌦m is defined as the ratio of the
energy content in neutrinos to that in matter [26].

• In addition, the power-spectrum for wavenumbers
k > kfs is further subject to a scale-dependent step-
like suppression, starting at kfs and saturating at
k ⇠ 1 h Mpc�1. This suppression is due to the ab-
sence of neutrino perturbations in the total matter
power spectrum, ultimately due to the fact that
neutrinos do not cluster on scales k > kfs. At
k ⇠ 1 h Mpc�1, the suppression reaches a con-
stant amplitude of �P (k)/P (k) ' �10f⌫ [26] (the
amplitude of the suppression is independent of red-
shift, however see the point below).

• The growth rate of the dark matter perturbations
is reduced from � / a to � / a

1� 3
5 f⌫ , due to the

absence of gravitational back-reaction e↵ects from
free-streaming neutrinos. The redshift dependence
of this suppression implies that this e↵ect could be
disentangled from that of a similar suppression in
the primordial power spectrum by measuring the
galaxy power spectrum at several redshifts, which
amounts to measuring the time-dependence of the
neutrino mass e↵ect [26].

• On very large scales (10�3
< k < 10�2), the mat-

ter power spectrum is enhanced by the presence of
massive neutrinos [96].

• As in the case of the EISW e↵ect in the CMB,
the step-like suppression in the matter power spec-
trum carries a non-trivial dependence on the indi-
vidual neutrino masses, as it depends on the time
of the transition to the non-relativistic regime for

each neutrino mass eigenstate [30, 33] (kfs / m
1/2

⌫i ),
and thus is in principle extremely sensitive to the
neutrino mass hierarchy. However, the e↵ect is very
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Cosmological parameter estimation
Sky Maps

Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` � 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-⇤CDM theoretical spectrum best fit to the Planck

TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` � 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-⇤CDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization e�ciencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization e�ciency at 143 ⇥ 143, c

EE

143, derived
from the EE spectrum is about 2� lower than that derived from
T E (where the � is the uncertainty of the T E estimate, of the
order of 0.02). This di↵erence may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters di↵erently in EE and T E. We have investi-
gated ways of correcting for e↵ective polarization e�ciencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization e�ciencies fixed to the e�ciencies ob-
tained from the fits on EE:

⇣
c

EE

100

⌘
EE fit

= 1.021;
⇣
c

EE

143

⌘
EE fit

=

0.966; and
⇣
c

EE

217

⌘
EE fit

= 1.040. The CamSpec likelihood, de-
scribed in the next section, uses spectrum-based e↵ective polar-
ization e�ciency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization e�ciency estimates
(which essentially di↵ers by applying to EE the e�ciencies
given above, and to T E the e�ciencies obtained fitting the T E

spectra,
⇣
c

EE

100

⌘
TE fit

= 1.04,
⇣
c

EE

143

⌘
TE fit

= 1.0, and
⇣
c

EE

217

⌘
TE fit

=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ⇤CDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization e�ciencies, we find small shifts in the base-⇤CDM
parameters compared with ignoring spectrum-based polariza-
tion e�ciency corrections entirely; the largest of these shifts
are +0.5� in !b, +0.1� in !c, and +0.3� in ns (to be com-

7

9

FIG. 1. Top: Non-linear galaxy power spectrum computed using the Halofit method with the camb code [126] (red line) and
the Coyote emulator (blue line) [130–132] at z=0.57 for the ⇤CDM best-fit parameters from Planck TT 2015 data. Green
triangle data points are the clustering measurements from the BOSS DR12 CMASS sample. The error bars are computed from
the diagonal elements Cii of the covariance matrix. For comparison with previous work [21], purple circles represent clustering
measurements from the BOSS Data Release 9 (DR9) CMASS sample. A very slight suppression in power on small scales (large
k) of the DR12 sample compared to the DR9 sample is visible. Note that the binning strategy adopted in DR9 and DR12 is
di↵erent. Bottom: Residuals with respect to the non-linear model with Halofit. The orange horizontal line indicates the k

range used in our analysis. As it is visually clear, the k range we choose is safe from large non-linear corrections.

rized our nomenclature of datasets (including baseline
datasets) and their combinations in Tab. II.

The 6dFGS data consists of a measurement of
rs(zdrag)/DV (z) at z = 0.106 (as per the discussion
above, rs/DV decreases as M⌫ is increased). The Wig-
gleZ data instead consist of measurements of the acoustic
parameter A(z) at three redshifts: z = 0.44, z = 0.6, and
z = 0.73, where the acoustic parameter is defined as:

A(z) =
100Dv(z)

p
⌦mh2

cz
. (16)

Given the e↵ect of M⌫ on Dv(z), A(z) will increase as
M⌫ increases. Finally, the DR11 LOWZ data consists
of a measurement of Dv(z)/rs(zdrag) (which increases as
M⌫ is increased) at z = 0.32.

Since the BAO feature is measured from the galaxy
two-point correlation function, to avoid double counting
of information, when considering the base and basepol

datasets we do not include the DR11 CMASS BAO mea-
surements, as the DR11 CMASS and DR12 CMASS vol-
umes overlap. However, if we drop the DR12 CMASS
power spectrum from our datasets, we are allowed to add
DR11 CMASS BAO measurements without this leading
to double-counting of information. Therefore, for com-

pleteness, we consider this case as well. Namely, we drop
the DR12 CMASS power spectrum from our datasets,
replacing it with the DR11 CMASS BAO measurement.
This consists of a measurement of Dv(ze↵)/rs(zdrag) at
ze↵ = 0.57.

Baseline combinations of datasets used, and
their definitions, III.

We refer to the combination of the four BAO measure-
ments (6dFGS, WiggleZ, DR11 LOWZ, DR11 CMASS)
as BAOFULL. We instead refer to the combination of
the base CMB and the BAOFULL datasets with the
nomenclature baseBAO . When high � ` polarization
CMB data is added to this baseBAO dataset, the com-
bination is referred to as basepolBAO , see Tab. II. The
comparison between basePK and baseBAO, as well as be-
tween basepolPK and basepolBAO, gives insight into the
role played by large-scale structure datasets in constrain-
ing neutrino masses. In particular, it allows for an assess-
ment of the relative importance of shape information in
the form of the power spectrum against geometrical infor-
mation in the form of BAO measurements when deriving

Power Spectra

Joint Analysis

• Apply Bayesian parameter Inference to derive 
the posterior pdf using MCMC. 

• Compute the bounds on each model 
parameter from the marginalized probability 
distribution for such parameter. 

0.0 0.3 0.6 0.9 1.2 1.5

M⌫ [eV]

0.0

0.2

0.4

0.6

0.8

1.0

P
/
P

m
ax

CMB

+Pgg (k) with bauto(k) = const

6

Planck+WP+lensing Planck+WP +lensing Planck+WP+lensing
(+HST) +DR8 (+HST) +DR9 (+HST)
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TABLE IV: 95% CL upper bounds on Σmν in a ΛCDM model from the different data combinations considered here, with
(without) the HST prior on the Hubble constant H0. The results with DR8 (DR9) data sets include the shot noise (the
systematic corrections) parameters.
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FIG. 1: Left panel: the red contours show the 68% and 95% CL allowed regions from the PLANCK data set in the (
∑

mν ,
w) plane, while the blue and green contours show the impact of the addition of the DR9 BAO signature and the full shape
of DR9 galaxy clustering measurements respectively. The magenta contours depict the combination of PLANCK with DR9
galaxy clustering data and SNLS3 measurements. Right panel: as in the left panel but in the (

∑
mν , Ωk) plane (note the

absence of the case with SNLS3 data in the analyses presented in this figure).

ence for w < −1, allowing therefore for a larger neutrino
mass. We also investigate the impact of adding Super-
novae Ia luminosity distance constraints to the combina-
tion of PLANCK and DR9 galaxy clustering data sets:
while the impact on the sum of the neutrino mass bound
is negligible, the errors on the dark energy equation of
state parameter w are reduced by a factor of three.

C. Curvature and massive neutrinos

We present here the constraints on neutrino masses
in the context of a non flat universe, allowing for a non
negligible curvature component, see Tab. I for the priors
adopted in the curvature component. Table VI shows our
constraints for the PLANCK data set, PLANCK plus
DR8 angular power spectrum data and PLANCK plus
DR9 galaxy clustering measurements with and without
a prior on the Hubble constant H0 from HST. In this non
flat model, DR8 angular clustering measurements com-
bined with PLANCK reduce the constraint on

∑
mν ,

from
∑

mν < 1.36 eV to
∑

mν < 0.92 eV (both at
95% CL). This constraint is very similar to the one ob-
tained if the BAO DR8 geometrical information is used,

∑
mν < 0.80 eV. Adding the HST prior to DR8 angular

power spectrum measurements improves significantly the
constraints: the 95% CL upper limit is

∑
mν < 0.33 eV.

DR9 3D power spectrum measurements greatly im-
prove the results from the PLANCK data set: when
combined with our basic PLANCK dataset, the 95% CL
bounds without the HST prior are

∑
mν < 0.35 eV

with systematic uncertainties. If HST data is included
as well in the analysis, the former 95% CL bound trans-
lates into

∑
mν < 0.26 eV. These limits are better than

those obtained from the combination of the PLANCK
data set with the DR9 BAO measurement, which is∑

mν < 0.47 eV without the HST prior. Therefore,
this non flat model, together with the wCDM one, is a
working example in which constraints from full shape 3D
power-spectrum measurements provide significant extra
information than those from BAO signature alone.

Figure 1, right panel, shows the 68% and 95% CL
allowed regions in the (

∑
mν , Ωk) plane from the

PLANCK data set described in Sec. III, and from the
combination of the former data set with DR9 BAO mea-
surements, and DR9 galaxy clustering information. No-
tice that the neutrino mass constraint arising from the
clustering measurements is more powerful than those ob-
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The bounds on neutrino properties depend on 
✓The  combination of cosmological data used Planck Collaboration: Cosmological parameters
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Fig. 30. Constraints on the sum of the neutrino masses for vari-
ous data combinations.

This is slightly weaker than the constraint from Planck
TT,TE,EE+lowP+lensing+BAO (which is tighter in both the
CamSpec and Plik likelihoods), but is immune to low level sys-
tematics that might a↵ect the constraints from the Planck polar-
ization spectra. Equation (57) is therefore a conservative limit.
Marginalizing over the range of neutrino masses, the Planck con-
straints on the late-time parameters are28

H0 = 67.7 ± 0.6

�8 = 0.810+0.015
�0.012

9>=
>; Planck TT+lowP+lensing+ext. (58)

For this restricted range of neutrino masses, the impact on the
other cosmological parameters is small and, in particular, low
values of �8 will remain in tension with the parameter space
preferred by Planck.

The constraint of Eq. (57) is weaker than the constraint of
Eq. (54b) excluding lensing, but there is no good reason to disre-
gard the Planck lensing information while retaining other astro-
physical data. The CMB lensing signal probes very-nearly lin-
ear scales and passes many consistency checks over the multi-
pole range used in the Planck lensing likelihood (see Sect. 5.1
and Planck Collaboration XV 2016). The situation with galaxy
weak lensing is rather di↵erent, as discussed in Sect. 5.5.2. In
addition to possible observational systematics, the weak lensing
data probe lower redshifts than CMB lensing, and smaller spa-
tial scales, where uncertainties in modelling nonlinearities in the
matter power spectrum and baryonic feedback become impor-
tant (Harnois-Déraps et al. 2015).

A larger range of neutrino masses was found by Beutler et al.
(2014) using a combination of RSD, BAO, and weak lens-
ing information. The tension between the RSD results and
base ⇤CDM was subsequently reduced following the analysis
of Samushia et al. (2014), as shown in Fig. 17. Galaxy weak
lensing and some cluster constraints remain in tension with base
⇤CDM, and we discuss possible neutrino resolutions of these
problems in Sect. 6.4.4.

28To simplify the displayed equations, H0 is given in units of
km s�1Mpc�1 in this section.

Fig. 31. Samples from Planck TT+lowP chains in the Ne↵–H0
plane, colour-coded by �8. The grey bands show the constraint
H0 = (70.6 ± 3.3) km s�1Mpc�1 of Eq. (30). Notice that higher
Ne↵ brings H0 into better consistency with direct measurements,
but increases �8. Solid black contours show the constraints from
Planck TT,TE,EE+lowP+BAO. Models with Ne↵ < 3.046 (left
of the solid vertical line) require photon heating after neutrino
decoupling or incomplete thermalization. Dashed vertical lines
correspond to specific fully-thermalized particle models, for ex-
ample one additional massless boson that decoupled around the
same time as the neutrinos (�Ne↵ ⇡ 0.57), or before muon
annihilation (�Ne↵ ⇡ 0.39), or an additional sterile neutrino
that decoupled around the same time as the active neutrinos
(�Ne↵ ⇡ 1).

Another way of potentially improving neutrino mass con-
straints is to use measurements of the Ly↵ flux power spectrum
of high-redshift quasars. Palanque-Delabrouille et al. (2015)
have recently reported an analysis of a large sample of quasar
spectra from the SDSSIII/BOSS survey. When combining their
results with 2013 Planck data, these authors find a bound

P
m⌫ <

0.15 eV (95 % CL), compatible with the results presented in this
section.

An exciting future prospect is the possible direct detection
of non-relativistic cosmic neutrinos by capture on tritium, for
example with the PTOLEMY experiment (Cocco et al. 2007;
Betts et al. 2013; Long et al. 2014). Unfortunately, for the mass
range

P
m⌫ < 0.23 eV preferred by Planck, detection with the

first generation experiment will be extremely di�cult.

6.4.2. Constraints on Ne↵

Dark radiation density in the early Universe is usually parame-
terized by Ne↵ , defined so that the total relativistic energy density
in neutrinos and any other dark radiation is given in terms of the
photon density ⇢� at T ⌧ 1 MeV by

⇢ = Ne↵
7
8

 
4

11

!4/3

⇢�. (59)

The numerical factors in this equation are included so that
Ne↵ = 3 for three standard model neutrinos that were thermal-
ized in the early Universe and decoupled well before electron-
positron annihilation. The standard cosmological prediction is

42
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Σmν [eV ] < 1.11 (0.22) < 0.98 (0.23) < 0.39 (0.23)

TABLE IV: 95% CL upper bounds on Σmν in a ΛCDM model from the different data combinations considered here, with
(without) the HST prior on the Hubble constant H0. The results with DR8 (DR9) data sets include the shot noise (the
systematic corrections) parameters.
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FIG. 1: Left panel: the red contours show the 68% and 95% CL allowed regions from the PLANCK data set in the (
∑

mν ,
w) plane, while the blue and green contours show the impact of the addition of the DR9 BAO signature and the full shape
of DR9 galaxy clustering measurements respectively. The magenta contours depict the combination of PLANCK with DR9
galaxy clustering data and SNLS3 measurements. Right panel: as in the left panel but in the (

∑
mν , Ωk) plane (note the

absence of the case with SNLS3 data in the analyses presented in this figure).

ence for w < −1, allowing therefore for a larger neutrino
mass. We also investigate the impact of adding Super-
novae Ia luminosity distance constraints to the combina-
tion of PLANCK and DR9 galaxy clustering data sets:
while the impact on the sum of the neutrino mass bound
is negligible, the errors on the dark energy equation of
state parameter w are reduced by a factor of three.

C. Curvature and massive neutrinos

We present here the constraints on neutrino masses
in the context of a non flat universe, allowing for a non
negligible curvature component, see Tab. I for the priors
adopted in the curvature component. Table VI shows our
constraints for the PLANCK data set, PLANCK plus
DR8 angular power spectrum data and PLANCK plus
DR9 galaxy clustering measurements with and without
a prior on the Hubble constant H0 from HST. In this non
flat model, DR8 angular clustering measurements com-
bined with PLANCK reduce the constraint on

∑
mν ,

from
∑

mν < 1.36 eV to
∑

mν < 0.92 eV (both at
95% CL). This constraint is very similar to the one ob-
tained if the BAO DR8 geometrical information is used,

∑
mν < 0.80 eV. Adding the HST prior to DR8 angular

power spectrum measurements improves significantly the
constraints: the 95% CL upper limit is

∑
mν < 0.33 eV.

DR9 3D power spectrum measurements greatly im-
prove the results from the PLANCK data set: when
combined with our basic PLANCK dataset, the 95% CL
bounds without the HST prior are

∑
mν < 0.35 eV

with systematic uncertainties. If HST data is included
as well in the analysis, the former 95% CL bound trans-
lates into

∑
mν < 0.26 eV. These limits are better than

those obtained from the combination of the PLANCK
data set with the DR9 BAO measurement, which is∑

mν < 0.47 eV without the HST prior. Therefore,
this non flat model, together with the wCDM one, is a
working example in which constraints from full shape 3D
power-spectrum measurements provide significant extra
information than those from BAO signature alone.

Figure 1, right panel, shows the 68% and 95% CL
allowed regions in the (

∑
mν , Ωk) plane from the

PLANCK data set described in Sec. III, and from the
combination of the former data set with DR9 BAO mea-
surements, and DR9 galaxy clustering information. No-
tice that the neutrino mass constraint arising from the
clustering measurements is more powerful than those ob-

6 standard cosmological parameters + neutrino masses + geometry of the universe 
The bounds on neutrino properties depend on 
✓The  combination of cosmological data used 
✓  The assumed cosmological model (problem of parameter degeneracies ) 
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How to improve Σmν limits? 
We need to improve the use of P(k,z)!
Galaxy power spectrum:
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FIG. 1. Top: Non-linear galaxy power spectrum computed using the Halofit method with the camb code [126] (red line) and
the Coyote emulator (blue line) [130–132] at z=0.57 for the ⇤CDM best-fit parameters from Planck TT 2015 data. Green
triangle data points are the clustering measurements from the BOSS DR12 CMASS sample. The error bars are computed from
the diagonal elements Cii of the covariance matrix. For comparison with previous work [21], purple circles represent clustering
measurements from the BOSS Data Release 9 (DR9) CMASS sample. A very slight suppression in power on small scales (large
k) of the DR12 sample compared to the DR9 sample is visible. Note that the binning strategy adopted in DR9 and DR12 is
di↵erent. Bottom: Residuals with respect to the non-linear model with Halofit. The orange horizontal line indicates the k

range used in our analysis. As it is visually clear, the k range we choose is safe from large non-linear corrections.

rized our nomenclature of datasets (including baseline
datasets) and their combinations in Tab. II.

The 6dFGS data consists of a measurement of
rs(zdrag)/DV (z) at z = 0.106 (as per the discussion
above, rs/DV decreases as M⌫ is increased). The Wig-
gleZ data instead consist of measurements of the acoustic
parameter A(z) at three redshifts: z = 0.44, z = 0.6, and
z = 0.73, where the acoustic parameter is defined as:

A(z) =
100Dv(z)

p
⌦mh2

cz
. (16)

Given the e↵ect of M⌫ on Dv(z), A(z) will increase as
M⌫ increases. Finally, the DR11 LOWZ data consists
of a measurement of Dv(z)/rs(zdrag) (which increases as
M⌫ is increased) at z = 0.32.

Since the BAO feature is measured from the galaxy
two-point correlation function, to avoid double counting
of information, when considering the base and basepol

datasets we do not include the DR11 CMASS BAO mea-
surements, as the DR11 CMASS and DR12 CMASS vol-
umes overlap. However, if we drop the DR12 CMASS
power spectrum from our datasets, we are allowed to add
DR11 CMASS BAO measurements without this leading
to double-counting of information. Therefore, for com-

pleteness, we consider this case as well. Namely, we drop
the DR12 CMASS power spectrum from our datasets,
replacing it with the DR11 CMASS BAO measurement.
This consists of a measurement of Dv(ze↵)/rs(zdrag) at
ze↵ = 0.57.

Baseline combinations of datasets used, and
their definitions, III.

We refer to the combination of the four BAO measure-
ments (6dFGS, WiggleZ, DR11 LOWZ, DR11 CMASS)
as BAOFULL. We instead refer to the combination of
the base CMB and the BAOFULL datasets with the
nomenclature baseBAO . When high � ` polarization
CMB data is added to this baseBAO dataset, the com-
bination is referred to as basepolBAO , see Tab. II. The
comparison between basePK and baseBAO, as well as be-
tween basepolPK and basepolBAO, gives insight into the
role played by large-scale structure datasets in constrain-
ing neutrino masses. In particular, it allows for an assess-
ment of the relative importance of shape information in
the form of the power spectrum against geometrical infor-
mation in the form of BAO measurements when deriving
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One of the most powerful cosmological datasets when it comes to constraining neutrino masses
is represented by galaxy power spectrum measurements, Pgg(k). The constraining power of Pgg(k)
is however severely limited by uncertainties in the modeling of the scale-dependent galaxy bias
b(k). In this Letter we present a new method to constrain b(k) by using the cross-correlation
between the Cosmic Microwave Background (CMB) lensing signal and galaxy maps (Cg

` ) using
a simple but theoretically well-motivated parametrization for b(k). We apply the method using
Cg

` measured by cross-correlating Planck lensing maps and the Baryon Oscillation Spectroscopic
Survey (BOSS) Data Release 11 (DR11) CMASS galaxy sample, and Pgg(k) measured from the
BOSS DR12 CMASS sample. We detect a non-zero scale-dependence at moderate significance, which
suggests that a proper modeling of b(k) is necessary in order to reduce the impact of non-linearities
and minimize the corresponding systematics. The accomplished increase in constraining power of
Pgg(k) is demonstrated by determining a 95% C.L. upper bound on the sum of the three active
neutrino masses M⌫ of M⌫ < 0.19 eV. This limit represents a significant improvement over previous
bounds with comparable datasets. Our method will prove especially powerful and important as
future large-scale structure surveys will overlap more significantly with the CMB lensing kernel
providing a large cross-correlation signal.

PACS numbers:

Introduction Galaxies, due to complexities inherent
to their formation and evolution, are biased tracers of
the underlying matter distribution. In other words, the
galaxy power spectrum measured from redshift surveys,
Pgg(k, z), is related to the underlying matter power spec-
trum P (k, z) (which cannot be directly measured, but
represents the true source of cosmological information)
through a factor b known as bias [1]:

Pgg(k, z) ⇡ b
2

auto
P (k, z) , (1)

The subscript “auto” refers to the fact that Pgg(k, z) is
an auto-correlation quantity, since it corresponds to the
Fourier transform of the 2-point auto-correlation function
of the galaxy overdensity field.

Galaxy bias also enters in cross-correlation quanti-
ties, such as the matter-galaxy cross-power spectrum

⇤Electronic address: egiusarma@lbl.gov
†Electronic address: sunny.vagnozzi@fysik.su.se

Pmg(k, z). This quantity is given by the Fourier trans-
form of the 2-point cross-correlation function between the
matter (dark matter plus baryons) and galaxy overden-
sity fields. However, the bias appearing in Pmg(k, z) dif-
fers from that of Eq. (1):

Pmg(k, z) ⇡ bcrossP (k, z) . (2)

The di↵erence between bauto and bcross, explained more
in detail in the Theory section, is expected based on
results of N-body simulations [2–6].
Heretofore, the bias has often been modeled as a scale-

independent quantity in cross-correlation analysis [7–10].
However, this approach is truly reliable only on large,
linear scales (k < kmax = 0.2hMpc�1 [1]), therefore
preventing one from fully retrieving information on cos-
mological parameters. The simplest and best-motivated
forms of the scale-dependent biases predicted by theory
and simulations read [1, 11–21]:

bcross(k) = a+ ck
2
, (3)

bauto(k) = a+ dk
2
, (4)

Neutrino Cosmology- E. Giusarma
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FIG. 1. Top: Non-linear galaxy power spectrum computed using the Halofit method with the camb code [126] (red line) and
the Coyote emulator (blue line) [130–132] at z=0.57 for the ⇤CDM best-fit parameters from Planck TT 2015 data. Green
triangle data points are the clustering measurements from the BOSS DR12 CMASS sample. The error bars are computed from
the diagonal elements Cii of the covariance matrix. For comparison with previous work [21], purple circles represent clustering
measurements from the BOSS Data Release 9 (DR9) CMASS sample. A very slight suppression in power on small scales (large
k) of the DR12 sample compared to the DR9 sample is visible. Note that the binning strategy adopted in DR9 and DR12 is
di↵erent. Bottom: Residuals with respect to the non-linear model with Halofit. The orange horizontal line indicates the k

range used in our analysis. As it is visually clear, the k range we choose is safe from large non-linear corrections.

rized our nomenclature of datasets (including baseline
datasets) and their combinations in Tab. II.

The 6dFGS data consists of a measurement of
rs(zdrag)/DV (z) at z = 0.106 (as per the discussion
above, rs/DV decreases as M⌫ is increased). The Wig-
gleZ data instead consist of measurements of the acoustic
parameter A(z) at three redshifts: z = 0.44, z = 0.6, and
z = 0.73, where the acoustic parameter is defined as:

A(z) =
100Dv(z)

p
⌦mh2

cz
. (16)

Given the e↵ect of M⌫ on Dv(z), A(z) will increase as
M⌫ increases. Finally, the DR11 LOWZ data consists
of a measurement of Dv(z)/rs(zdrag) (which increases as
M⌫ is increased) at z = 0.32.

Since the BAO feature is measured from the galaxy
two-point correlation function, to avoid double counting
of information, when considering the base and basepol

datasets we do not include the DR11 CMASS BAO mea-
surements, as the DR11 CMASS and DR12 CMASS vol-
umes overlap. However, if we drop the DR12 CMASS
power spectrum from our datasets, we are allowed to add
DR11 CMASS BAO measurements without this leading
to double-counting of information. Therefore, for com-

pleteness, we consider this case as well. Namely, we drop
the DR12 CMASS power spectrum from our datasets,
replacing it with the DR11 CMASS BAO measurement.
This consists of a measurement of Dv(ze↵)/rs(zdrag) at
ze↵ = 0.57.

Baseline combinations of datasets used, and
their definitions, III.

We refer to the combination of the four BAO measure-
ments (6dFGS, WiggleZ, DR11 LOWZ, DR11 CMASS)
as BAOFULL. We instead refer to the combination of
the base CMB and the BAOFULL datasets with the
nomenclature baseBAO . When high � ` polarization
CMB data is added to this baseBAO dataset, the com-
bination is referred to as basepolBAO , see Tab. II. The
comparison between basePK and baseBAO, as well as be-
tween basepolPK and basepolBAO, gives insight into the
role played by large-scale structure datasets in constrain-
ing neutrino masses. In particular, it allows for an assess-
ment of the relative importance of shape information in
the form of the power spectrum against geometrical infor-
mation in the form of BAO measurements when deriving
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FIG. 1. Top: Non-linear galaxy power spectrum computed using the Halofit method with the camb code [126] (red line) and
the Coyote emulator (blue line) [130–132] at z=0.57 for the ⇤CDM best-fit parameters from Planck TT 2015 data. Green
triangle data points are the clustering measurements from the BOSS DR12 CMASS sample. The error bars are computed from
the diagonal elements Cii of the covariance matrix. For comparison with previous work [21], purple circles represent clustering
measurements from the BOSS Data Release 9 (DR9) CMASS sample. A very slight suppression in power on small scales (large
k) of the DR12 sample compared to the DR9 sample is visible. Note that the binning strategy adopted in DR9 and DR12 is
di↵erent. Bottom: Residuals with respect to the non-linear model with Halofit. The orange horizontal line indicates the k

range used in our analysis. As it is visually clear, the k range we choose is safe from large non-linear corrections.
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The 6dFGS data consists of a measurement of
rs(zdrag)/DV (z) at z = 0.106 (as per the discussion
above, rs/DV decreases as M⌫ is increased). The Wig-
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M⌫ increases. Finally, the DR11 LOWZ data consists
of a measurement of Dv(z)/rs(zdrag) (which increases as
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Since the BAO feature is measured from the galaxy
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datasets we do not include the DR11 CMASS BAO mea-
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umes overlap. However, if we drop the DR12 CMASS
power spectrum from our datasets, we are allowed to add
DR11 CMASS BAO measurements without this leading
to double-counting of information. Therefore, for com-

pleteness, we consider this case as well. Namely, we drop
the DR12 CMASS power spectrum from our datasets,
replacing it with the DR11 CMASS BAO measurement.
This consists of a measurement of Dv(ze↵)/rs(zdrag) at
ze↵ = 0.57.

Baseline combinations of datasets used, and
their definitions, III.

We refer to the combination of the four BAO measure-
ments (6dFGS, WiggleZ, DR11 LOWZ, DR11 CMASS)
as BAOFULL. We instead refer to the combination of
the base CMB and the BAOFULL datasets with the
nomenclature baseBAO . When high � ` polarization
CMB data is added to this baseBAO dataset, the com-
bination is referred to as basepolBAO , see Tab. II. The
comparison between basePK and baseBAO, as well as be-
tween basepolPK and basepolBAO, gives insight into the
role played by large-scale structure datasets in constrain-
ing neutrino masses. In particular, it allows for an assess-
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the form of the power spectrum against geometrical infor-
mation in the form of BAO measurements when deriving
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The paths of CMB photons are bent by the gravity of intervening 
matter (e.g., clusters of galaxies) along the way

Gravitational Lensing of the CMB

sensitive to total matter density — including dark matter
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(2.5σ overall) 
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lensing analyses 

• Deficit also seen in DES-
SPT lensing analysis
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vational and theoretical side, we believe the time is ripe to
move the exciting research program of astrophysical and
cosmological studies with CMB lensing cross-correlations
one step further, by uncovering the matter distribution
and its relation to the distribution of its luminous trac-
ers more precisely than ever. It is our aim in this Letter
to use CMB lensing-galaxy cross-correlation to constrain
for the first time the scale-dependence of the galaxy bias.

Theory The CMB lensing consists of the gravitational
deflection of the CMB photons by the large scale distri-
bution of matter in the Universe. the mass distribution
along their path through the Large Scale Structure (LSS).
Since the CMB lensing maps contain the integrated in-
formation of the matter distribution in all redshift up to
the last scattering surface, it can be used as a probe of
the matter density of the Universe. In particular, the
calculation of the cross-correlation between CMB lensing
potential and the surveys of galaxy is a unique tool to
constraint cosmology and the evolution of the growth of
structures.

If we assume a ⇤CDM model, we can write the two-
points statistics of the galaxy-CMB lensing correlation in
Limber approximation as:

C
kg
` =

Z z1

z0

dz
H(z)

�2(z)
W

k(z)fg(z)Pmg

✓
k =

`

�(z)
, z

◆
, (1)

where �(z) is the comoving distance at redshift z, fg(z)
is the redshift distribution of galaxies and Pmg(k, z) is
the matter-galaxy 3D cross-power spectrum defined as:

Pmg(k, z) = b(k)P (k, z) , (2)

in which P (k, z) is the non-linear matter power spectrum
at redshift z and wavenumber k and b(k) is the scale-
dependent bias. In equation ?? W

k(z) is the kernel for
CMB lensing converge for a flat universe [? ? ]:

W
k(z) =

3⌦m,0

2c

H
2
0

H(z)
(1 + z)�(z)

�CMB � �(z)

�CMB
, (3)

where H(z) is the Hubble parameter at redshift z and H0

and ⌦m,0 represent the Hubble constant and the matter
density at present time. As a comparison, we also con-
sider the galaxy clustering angular auto-spectrum given
by:

C
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dz
H(z)

c

1

�2(z)
f
2
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`

�(z)
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in which Pgg is the galaxy 3D auto-power spectrum de-
fined as:

Pgg(k, z) = b
2(k)P (k, z) . (5)

In equation ?? and ?? the quantity b(k) is known as
scale-dependent bias which relates the density of galaxies

to the underlying dark matter density field. In Fourier
space it can be expressed as ( [? ? ]):

b1(k) = b10 +
sb11

s1
k
2
, (6)

in which b10 is the scale-independent coe�cient, b11 is the
scale-dependent coe�cient and s/s1 is a normalization
factor that makes dimensionless b1(k). In the previous
equation s = �

2
0 is the variance in the smoothed field at

scale R and s1 = �
2
1 is the first moment variance at same

scale R. We can generalize the definition of variance as
follows:

sj = �
2
j =

Z
dk

k
2+2j

2⇡2
P (k)W 2(kR) , (7)

where W (kR) is the Gaussian window function:
W (kR) = exp(�k

2
R

2
/2).

In this work we will consider a scale-dependent bias of
the form:

b(k) = abias + cbiask
2
, (8)

where abias is the scale independent factor and cbias is
defined as:

cbias =
s

s1
b11 . (9)

We take into account for a normalization factor of the
order of 14(Mpc/h)2 obtained after considering the
BOSS DR12 CMASS sample.

Data PLANCK + CMASS +CROSS-
CORRELATION FROM ANTHONY ET AL.The
non-linear matter power spectrum of equations ?? and ??
is computed using the HaloFit method with the CAMB
code [? ].
Results First we send some simple runs using just

Planck data, together with C
gg
` and C

g
` . For C

g
` , we

remove the first 5 data points as they are clearly a↵ected
by systematics which lead to a reduction of power on
large scales (the whole dataset is still a↵ected to some
extent, but the amount of contamination was particu-
larly severe for the first 5 data points). The results are
shown in Tab. ?? and Figs. ??, ??.
The fact that C

g
` is a↵ected by residual systematics

leading to a power deficit on large scales is evident on the
results. The paucity of power on large scales is reflected
in a lower value of abias compared to that recovered from
C

gg
` . To accommodate at the same time a lack of power

on large scales but not on small scales, the data is pre-
ferring non-zero and large values of cbias. All of this is
reflected in poor neutrino mass constraints given the de-
generacy between M⌫ and cbias, or in a spurious evidence
for neutrino masses when C

g
` is combined with C

gg
` .
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Planck TT+lowP+ShapeDR12 
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The role of N-body simulations in Cosmology
Theoretical tool for calculations in the non-linear 
regime (important on small scales). 

Connect the cosmological initial conditions 
(simple problem) with the universe today 
(complex problem).

Villaescusa-Navarro SIMS

Simulations are essential for: 
1. Make prediction of theory:  
• Internal structure of Halos 
• Galaxy formation models 
• Baryonic acoustic oscillations in the matter distribution 
• Neutrino clustering 
• ….. 

2. Generate mock data 

3. Compute the Covariance Matrix 

4. Data Analysis 

5. Optimization of observational strategies 

Neutrino Cosmology- E. Giusarma



The Quijote simulations
• A set of 34500 N-body simulations 
• 1000 Mpc/h            
• 5123 DM particles (+ 5123 ν particles)    
• z = {0, 0.5, 1, 2, 3} 
• Latin hypercube with 4000 simulations in the {Ωm, Ωb, h, ns, σ8} hyperplane 
• More than 5 trillion particles at a single redshift 
• 750 Tb, 18M cpu hours 
• Publicly available at https://github.com/franciscovillaescusa/Quijote-

simulations

Villaescusa-Navarro 
Flatiron Institute CCA

Neutrino Cosmology- E. Giusarma



Neutrino Simulations

~104 CPU hours

~106 CPU hours

Σmν=0.06eV 

Σmν=0.0eV 

Σmν=0.1eV 

Σmν=0.15eV 

Neutrino Cosmology- E. Giusarma

We run 100 N-body simulations in a box of 1000 Mpc/h

(8 years )



Neutrino Simulations

~104 CPU hours

~106 CPU hours
Σmν=0.0eV 

Σmν=0.1eV 

Σmν=0.15eV 

Neutrino Cosmology- E. Giusarma

We run 100 N-body simulations in a box of 1000 Mpc/h

(8 years )

Can we use Machine Learning to 
predict fast cosmological 

simulations?

Σmν=0.06eV 
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• Part of machine learning methods based on artificial neural networks. 

• Breakthroughs in processing images, videos, speeches and audio 

• Composition of non-linear transformation of the data. 

• Goal: Learn useful representations, features, directly from data. 

Deep learning 

Deep learning: Convolutional Neural 
Network (CNN)
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Deep learning 

Simple single layer Neural Network
• Consists of a linear combination of input through a nonlinear function:

A simple single layer Neural Network
Consists of a linear combination of input 
through a nonlinear function:

W is the weight parameter to be learned.
x is the output of the previous layer
f is a simple nonlinear function. Popular choice is max(x,0), 
called ReLu (Rectified Linear Unit)

Deep learning: Convolutional Neural 
Network (CNN)
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• Part of machine learning methods based on artificial neural networks. 

• Breakthroughs in processing images, videos, speeches and audio 

• Composition of non-linear transformation of the data. 

• Goal: Learn useful representations, features, directly from data. 

Deep learning 

Simple single layer Neural Network
• Consists of a linear combination of input through a nonlinear function:

A simple single layer Neural Network
Consists of a linear combination of input 
through a nonlinear function:

W is the weight parameter to be learned.
x is the output of the previous layer
f is a simple nonlinear function. Popular choice is max(x,0), 
called ReLu (Rectified Linear Unit)

Deep learning: Convolutional Neural 
Network (CNN)

CNN

Deep learning

Deep learning
Part of machine learning methods based on artificial neural
networks.
Breakthroughs in processing images, videos, speeches and audios.

Siyu He (CMU, FI) Thesis Defense May 28th, 2019 12 / 65

• Neural Network with a convolution operation instead of matrix multiplication in at least one of 
the layers 
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Deep learning application

Deep learning: Convolutional Neural 
Network (CNN)

Deep learning

Deep learning
Part of machine learning methods based on artificial neural
networks.
Breakthroughs in processing images, videos, speeches and audios...
Applicable to many domains.

Large Scale Structure
S.Ravanbakhsh et al. (2016)

Gravitational lensing
Y.D.Hezaveh et al. (2017)

CMB
S.He et al. (2018)

Siyu He (CMU, FI) Thesis Defense May 28th, 2019 13 / 65
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Figure 7: U-Net model Architecture. Yin: Describe the flow: input to contracting path to expansive
path to output. Each yellow block corresponds to a multi-channel feature map. The shallow yellow box
shows the concatenated part of the box. The number of channels and the output size is on top of each
box. Different arrows corresponds to different operations. All the arrow operations except for the last
one means a series of convolution, ReLU and batch normalization. The last arrow operation is simply a
1⇥1⇥1 convolution.
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Credit: Siyu He

Can we use Machine Learning to study the effect of 
neutrinos in our universe?

Predict simulations with massive neutrinos using ConvNet:

• Generate neutrino simulations with mass between 0 and 0.6 eV (Generative 
Adversarial Networks,….).


• Study how massive neutrinos modify standard numerical simulations by 
changing some features.


• Apply the same technique to generate non-standard cosmological simulations 
(modified gravity, dynamical dark energy …).

Training, Validation and Testing with  
O(100)s of simulations

Training:  Input N-body simulations with known cosmological parameters to train the ConvNet 
Validation: Input next set of simulations with known cosmological parameters to  

fine tune the hidden parameters in ConvNet  (eg. Number of layers) 
Test: Input N-body simulations with unknown cosmological parameters and  predict with ConvNet

Ravanbakhsh, Oliver, Price, Ho, Schendier & Poczos ICML 2016

N-body simulations 
with massless 

neutrinos: Σmν=0eV

Training, Validation and Testing with  
O(100)s of simulations

Training:  Input N-body simulations with known cosmological parameters to train the ConvNet 
Validation: Input next set of simulations with known cosmological parameters to  

fine tune the hidden parameters in ConvNet  (eg. Number of layers) 
Test: Input N-body simulations with unknown cosmological parameters and  predict with ConvNet

Ravanbakhsh, Oliver, Price, Ho, Schendier & Poczos ICML 2016

N-body simulations with  
neutrinos with mass: 

Σmν=0.06 eV, 0.1eV, 

0.15eV, 0.6 eV

Input Output 
ConvNetInput Prediction

Can we use Machine Learning to study the effect of 
neutrinos in our universe?

Predict simulations with massive neutrinos using ConvNet:

• Generate neutrino simulations with mass between 0 and 0.6 eV (Generative 
Adversarial Networks,….).


• Study how massive neutrinos modify standard numerical simulations by 
changing some features.


• Apply the same technique to generate non-standard cosmological simulations 
(modified gravity, dynamical dark energy …).

Training, Validation and Testing with  
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N-body simulations 
with massless 

neutrinos: Σmν=0eV

Training, Validation and Testing with  
O(100)s of simulations

Training:  Input N-body simulations with known cosmological parameters to train the ConvNet 
Validation: Input next set of simulations with known cosmological parameters to  

fine tune the hidden parameters in ConvNet  (eg. Number of layers) 
Test: Input N-body simulations with unknown cosmological parameters and  predict with ConvNet

Ravanbakhsh, Oliver, Price, Ho, Schendier & Poczos ICML 2016

N-body simulations with  
neutrinos with mass: 

Σmν=0.06 eV, 0.1eV, 

0.15eV, 0.6 eV

Input Output 
ConvNet

N-body 
simulations with 
massive neutrinos: 
Σmν=0.15eV 

Deep learning: Convolutional neural network

Predicting massive neutrino simulations

U-Net

Neutrino Cosmology- E. Giusarma

N-body simulations 
with massless 
neutrinos: Σmν=0.0eV 

Preliminary results: E. Giusarma , He, Reyes, Villaescusa-Navarro, Ho
Neutrino Cosmology- E. Giusarma



Predicting massive neutrino simulations

Neutrino Cosmology- E. Giusarma
Preliminary results: Elena Giusarma , He, Reyes, Villaescusa-Navarro, Ho

✓ 100 N-body simulations without neutrinos as input and 100 N-body simulations with 
massive neutrinos as target (Σmν=0.15eV).

✓ Each simulation consists of 130 million particles in a volume of 1,000 Mpc/h on each 
side.

— Input, N-body without neutrinos  
— Truth, N-body with massive neutrinos 
— Analytical approximation, Benchmark 
model

Neutrino Cosmology- E. Giusarma



Predicting massive neutrino simulations

Neutrino Cosmology- E. Giusarma

— Input, N-body without neutrinos  
— Truth, N-body with massive neutrinos 
— Analytical approximation, Benchmark 
model

✓ 100 N-body simulations without neutrinos as input and 100 N-body simulations with 
massive neutrinos as target (Σmν=0.15eV).

✓ Each simulation consists of 130 million particles in a volume of 1,000 Mpc/h on each 
side.

✓ Each simulation is separated into 4,000 sub-cubes of size 33,000 voxels 
corresponding to regions of size around 62.5 Mpc/h. 

Preliminary results: Elena Giusarma , He, Reyes, Villaescusa-Navarro, Ho
Neutrino Cosmology- E. Giusarma



Credit: Siyu He

Training
Deep learning: Convolutional neural network

Predicting massive neutrino simulations

U-Net Prediction

Σmν=0.15eV

Σmν=0.0eV

Preliminary results: Elena Giusarma , He, Reyes, Villaescusa-Navarro, Ho
Neutrino Cosmology- E. Giusarma

3
×

3
2
3

6
4

×
3

2
3

6
4

×
3

2
3

1
2

8
×

1
6
3

1
2

8
×

1
6
3

1
2

8
×

1
6
3

2
5

6
×

8
3

2
5

6
×

8
3

2
5

6
×

8
3

(1
2

8
+

1
2

8
)×

1
6
3

1
2

8
×

1
6
3

1
2

8
×

1
6
3

(6
4

+
6

4
)×

3
2
3

6
4

×
3

2
3

6
4

×
3

2
3

3
×

3
2
3

Concat

Concat

S
tr

id
e

=
2

S
tr

id
e

=
2

S
tr

id
e

=
1

/2

S
tr

id
e

=
1

/2

conv3, stride=1

In
p

u
t

O
u

tp
u

t

conv3, stride=2

transposed conv3, stride=1/2

Figure 7: U-Net model Architecture. Yin: Describe the flow: input to contracting path to expansive
path to output. Each yellow block corresponds to a multi-channel feature map. The shallow yellow box
shows the concatenated part of the box. The number of channels and the output size is on top of each
box. Different arrows corresponds to different operations. All the arrow operations except for the last
one means a series of convolution, ReLU and batch normalization. The last arrow operation is simply a
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Training
Deep learning: Convolutional neural network

Predicting massive neutrino simulations

U-Net Prediction

Σmν=0.15eV

Σmν=0.0eV
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Preliminary results: Elena Giusarma , He, Reyes, Villaescusa-Navarro, Ho

Σmν=0.15eV

Neutrino Cosmology- E. Giusarma



Results: Summary statistics

Neutrino Cosmology- E. Giusarma

Two-point correlation function:

Power spectrum: 

(a) 2-point analysis (b) 3-point analysis

Fig. 3. (a) From top to bottom: (top) density and displacement power-spectrum of D3M, 2LPT, and FastPM; (middle) transfer function – i.e., the square root of the ratio of the
predicted power-spectrum and the ground truth, and; (bottom) 1-r2 where r is the correlation coefficient between the predicted fields and the true fields. Results are the
averaged values from 1000 test simulations.
(b) 3-point correlation function measured as binned multipole coefficients ’l(r1, r2). Results are averaged values from 10 test simulations. The top panel shows ’l(r1, r2)
for D3M, FastPM, and 2LPT. In order to amplify the finer features, we have weighted ’l(r1, r2) by r2

1r2
2/(100 Mpc/h)4 in each spherical shell. On the diagonal elements,

the 3PCF is expected to be dominated by squeezed triangles for which perturbation theory is not valid, so we have not computed the diagonal elements (thus blank in the plots
here). The bottom panel shows the relative residual of D3M and 2LPT models compared to FastPM.

and its Fourier transform, the power spectrum P (k):

›(|r|) = È”A(rÕ)”B(rÕ + r)Í,

P (|k|) =
⁄

d3r ›(r)eik·r,
[1]

where the ensemble average È Í is taken over all possible re-
alizations of the Universe. Our Universe is observed to be
homogeneous and isotropic on large scales, i.e. without any
special location or direction. This allows one to drop the
dependences on rÕ and on the direction of r, leaving only the
amplitude |r| in the final definition of ›(r). In the second
equation, P (k) is simply the Fourier transform of ›(r), and
captures the dispersion of the plane wave amplitudes at di�er-
ent scales in the Fourier space. k is the 3D wavevector of the
plane wave, and its amplitude k (the wavenumber) is related
to the wavelength ⁄ by k = 2fi/⁄. Due to isotropy of the
Universe, we drop the vector form of r and k when we discuss
›(r) and P (k) from here onwards.

We focus on the Fourier-space representation of the 2-point
correlation. We employ the transfer function T (k) and the
correlation coe�cient r(k) as metrics to quantify the model
performance against the ground truth (FastPM) on the 2-point
correlation. We define the transfer function T (k) as the square
root of the ratio of two power spectra,

T (k) =
Ú

Ppred(k)
Ptrue(k) , [2]

where Ppred(k) is the density or displacement power spectrum
from 2LPT or D3M predictions, and Ptrue(k) is the equivalent
from the ground truth (FastPM). The correlation coe�cient
r(k) is a form of normalized cross power spectrum,

r(k) = Ppred◊true(k)
Ppred(k)Ptrue(k)

, [3]

where Ppred◊true(k) is the cross power spectrum between 2LPT
or D3M predictions and the ground truth (FastPM) simula-
tion. Transfer function captures the discrepancy in amplitudes,

while the correlation coe�cient can indicate the discrepancy in
phases as functions of scales. For a perfectly accurate predic-
tion, T (k) and r(k) are both 1. In particular, 1 ≠ r2 describes
stochasticity, the fraction of the variance in the prediction
that cannot be explained by the true model.

Figures 3(a) shows the average power spectrum, transfer
function T (k) and stochasticity 1 ≠ r2(k) of the displacement
field and the density field over 1000 simulations. The power
spectrum of density from 2LPT prediction is 3% smaller than
that of FastPM on large scales (k ¥ 0.05 h/Mpc). This is
expected since 2LPT performs accurately only on very large
scales (k < 0.01 h/Mpc). The displacement transfer function
of 2LPT increases above 1 at k ¥ 0.35 h/Mpc and then drops
sharply. The increase of 2LPT displacement transfer function
is because 2LPT over-estimates the displacement power at
small scales (see, e.g. 62). There is a sharp drop of power
near the voxel scale, as we smooth over voxel scales in our
predictions, which automatically erases power at scales smaller
than the voxel size. Now we turn to D3M predictions: both
the density and displacement transfer functions of the D3M
di�er from 1 by a mere 0.4% at scale k . 0.4 h/Mpc, and
this discrepancy only increases to 3% and 6% for density
field and displacement field respectively, as k increases to
the Nyquist frequency around 0.7 h/Mpc. The stochasticity
hovers at approximately 10≠3 and 10≠2 for most scales. In
other words, the correlation coe�cient of either density or
displacement field is over 90% between the D3M predictions
and FastPM simulations all the way down to small scales of k =
0.7 h/Mpc. The transfer function and correlation coe�cient
of the D3M suggest its nearly perfect predicting power from
large to intermediate scales — the regimes where traditional
perturbation theories like the 2LPT work reasonably well

— and even beyond. Only on fairly small scales that the
D3M starts to falter, which is not surprising as the deeply
nonlinear evolution at these scales is also the most di�cult to
solve accurately in simulations and even impossible for any
analytical theories to model.

(a) 2-point analysis (b) 3-point analysis

Fig. 3. (a) From top to bottom: (top) density and displacement power-spectrum of D3M, 2LPT, and FastPM; (middle) transfer function – i.e., the square root of the ratio of the
predicted power-spectrum and the ground truth, and; (bottom) 1-r2 where r is the correlation coefficient between the predicted fields and the true fields. Results are the
averaged values from 1000 test simulations.
(b) 3-point correlation function measured as binned multipole coefficients ’l(r1, r2). Results are averaged values from 10 test simulations. The top panel shows ’l(r1, r2)
for D3M, FastPM, and 2LPT. In order to amplify the finer features, we have weighted ’l(r1, r2) by r2
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2/(100 Mpc/h)4 in each spherical shell. On the diagonal elements,

the 3PCF is expected to be dominated by squeezed triangles for which perturbation theory is not valid, so we have not computed the diagonal elements (thus blank in the plots
here). The bottom panel shows the relative residual of D3M and 2LPT models compared to FastPM.
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P (|k|) =
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d3r ›(r)eik·r,
[1]

where the ensemble average È Í is taken over all possible re-
alizations of the Universe. Our Universe is observed to be
homogeneous and isotropic on large scales, i.e. without any
special location or direction. This allows one to drop the
dependences on rÕ and on the direction of r, leaving only the
amplitude |r| in the final definition of ›(r). In the second
equation, P (k) is simply the Fourier transform of ›(r), and
captures the dispersion of the plane wave amplitudes at di�er-
ent scales in the Fourier space. k is the 3D wavevector of the
plane wave, and its amplitude k (the wavenumber) is related
to the wavelength ⁄ by k = 2fi/⁄. Due to isotropy of the
Universe, we drop the vector form of r and k when we discuss
›(r) and P (k) from here onwards.

We focus on the Fourier-space representation of the 2-point
correlation. We employ the transfer function T (k) and the
correlation coe�cient r(k) as metrics to quantify the model
performance against the ground truth (FastPM) on the 2-point
correlation. We define the transfer function T (k) as the square
root of the ratio of two power spectra,

T (k) =
Ú

Ppred(k)
Ptrue(k) , [2]

where Ppred(k) is the density or displacement power spectrum
from 2LPT or D3M predictions, and Ptrue(k) is the equivalent
from the ground truth (FastPM). The correlation coe�cient
r(k) is a form of normalized cross power spectrum,

r(k) = Ppred◊true(k)
Ppred(k)Ptrue(k)

, [3]

where Ppred◊true(k) is the cross power spectrum between 2LPT
or D3M predictions and the ground truth (FastPM) simula-
tion. Transfer function captures the discrepancy in amplitudes,

while the correlation coe�cient can indicate the discrepancy in
phases as functions of scales. For a perfectly accurate predic-
tion, T (k) and r(k) are both 1. In particular, 1 ≠ r2 describes
stochasticity, the fraction of the variance in the prediction
that cannot be explained by the true model.

Figures 3(a) shows the average power spectrum, transfer
function T (k) and stochasticity 1 ≠ r2(k) of the displacement
field and the density field over 1000 simulations. The power
spectrum of density from 2LPT prediction is 3% smaller than
that of FastPM on large scales (k ¥ 0.05 h/Mpc). This is
expected since 2LPT performs accurately only on very large
scales (k < 0.01 h/Mpc). The displacement transfer function
of 2LPT increases above 1 at k ¥ 0.35 h/Mpc and then drops
sharply. The increase of 2LPT displacement transfer function
is because 2LPT over-estimates the displacement power at
small scales (see, e.g. 62). There is a sharp drop of power
near the voxel scale, as we smooth over voxel scales in our
predictions, which automatically erases power at scales smaller
than the voxel size. Now we turn to D3M predictions: both
the density and displacement transfer functions of the D3M
di�er from 1 by a mere 0.4% at scale k . 0.4 h/Mpc, and
this discrepancy only increases to 3% and 6% for density
field and displacement field respectively, as k increases to
the Nyquist frequency around 0.7 h/Mpc. The stochasticity
hovers at approximately 10≠3 and 10≠2 for most scales. In
other words, the correlation coe�cient of either density or
displacement field is over 90% between the D3M predictions
and FastPM simulations all the way down to small scales of k =
0.7 h/Mpc. The transfer function and correlation coe�cient
of the D3M suggest its nearly perfect predicting power from
large to intermediate scales — the regimes where traditional
perturbation theories like the 2LPT work reasonably well

— and even beyond. Only on fairly small scales that the
D3M starts to falter, which is not surprising as the deeply
nonlinear evolution at these scales is also the most di�cult to
solve accurately in simulations and even impossible for any
analytical theories to model.

(a) 2-point analysis (b) 3-point analysis

Fig. 3. (a) From top to bottom: (top) density and displacement power-spectrum of D3M, 2LPT, and FastPM; (middle) transfer function – i.e., the square root of the ratio of the
predicted power-spectrum and the ground truth, and; (bottom) 1-r2 where r is the correlation coefficient between the predicted fields and the true fields. Results are the
averaged values from 1000 test simulations.
(b) 3-point correlation function measured as binned multipole coefficients ’l(r1, r2). Results are averaged values from 10 test simulations. The top panel shows ’l(r1, r2)
for D3M, FastPM, and 2LPT. In order to amplify the finer features, we have weighted ’l(r1, r2) by r2

1r2
2/(100 Mpc/h)4 in each spherical shell. On the diagonal elements,

the 3PCF is expected to be dominated by squeezed triangles for which perturbation theory is not valid, so we have not computed the diagonal elements (thus blank in the plots
here). The bottom panel shows the relative residual of D3M and 2LPT models compared to FastPM.
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where the ensemble average È Í is taken over all possible re-
alizations of the Universe. Our Universe is observed to be
homogeneous and isotropic on large scales, i.e. without any
special location or direction. This allows one to drop the
dependences on rÕ and on the direction of r, leaving only the
amplitude |r| in the final definition of ›(r). In the second
equation, P (k) is simply the Fourier transform of ›(r), and
captures the dispersion of the plane wave amplitudes at di�er-
ent scales in the Fourier space. k is the 3D wavevector of the
plane wave, and its amplitude k (the wavenumber) is related
to the wavelength ⁄ by k = 2fi/⁄. Due to isotropy of the
Universe, we drop the vector form of r and k when we discuss
›(r) and P (k) from here onwards.

We focus on the Fourier-space representation of the 2-point
correlation. We employ the transfer function T (k) and the
correlation coe�cient r(k) as metrics to quantify the model
performance against the ground truth (FastPM) on the 2-point
correlation. We define the transfer function T (k) as the square
root of the ratio of two power spectra,

T (k) =
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Ppred(k)
Ptrue(k) , [2]

where Ppred(k) is the density or displacement power spectrum
from 2LPT or D3M predictions, and Ptrue(k) is the equivalent
from the ground truth (FastPM). The correlation coe�cient
r(k) is a form of normalized cross power spectrum,

r(k) = Ppred◊true(k)
Ppred(k)Ptrue(k)

, [3]

where Ppred◊true(k) is the cross power spectrum between 2LPT
or D3M predictions and the ground truth (FastPM) simula-
tion. Transfer function captures the discrepancy in amplitudes,

while the correlation coe�cient can indicate the discrepancy in
phases as functions of scales. For a perfectly accurate predic-
tion, T (k) and r(k) are both 1. In particular, 1 ≠ r2 describes
stochasticity, the fraction of the variance in the prediction
that cannot be explained by the true model.

Figures 3(a) shows the average power spectrum, transfer
function T (k) and stochasticity 1 ≠ r2(k) of the displacement
field and the density field over 1000 simulations. The power
spectrum of density from 2LPT prediction is 3% smaller than
that of FastPM on large scales (k ¥ 0.05 h/Mpc). This is
expected since 2LPT performs accurately only on very large
scales (k < 0.01 h/Mpc). The displacement transfer function
of 2LPT increases above 1 at k ¥ 0.35 h/Mpc and then drops
sharply. The increase of 2LPT displacement transfer function
is because 2LPT over-estimates the displacement power at
small scales (see, e.g. 62). There is a sharp drop of power
near the voxel scale, as we smooth over voxel scales in our
predictions, which automatically erases power at scales smaller
than the voxel size. Now we turn to D3M predictions: both
the density and displacement transfer functions of the D3M
di�er from 1 by a mere 0.4% at scale k . 0.4 h/Mpc, and
this discrepancy only increases to 3% and 6% for density
field and displacement field respectively, as k increases to
the Nyquist frequency around 0.7 h/Mpc. The stochasticity
hovers at approximately 10≠3 and 10≠2 for most scales. In
other words, the correlation coe�cient of either density or
displacement field is over 90% between the D3M predictions
and FastPM simulations all the way down to small scales of k =
0.7 h/Mpc. The transfer function and correlation coe�cient
of the D3M suggest its nearly perfect predicting power from
large to intermediate scales — the regimes where traditional
perturbation theories like the 2LPT work reasonably well

— and even beyond. Only on fairly small scales that the
D3M starts to falter, which is not surprising as the deeply
nonlinear evolution at these scales is also the most di�cult to
solve accurately in simulations and even impossible for any
analytical theories to model.
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Results: Bispectrum 
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Looking at non-gaussian information 
3-point correlation function:

Figure 9: Visualization of slices of the simulations: �rst column are dark-matter halos, second column are the corresponding
target galaxies. 3d and 4th columns are predictions from our two-phase models, 5th from a single-phase classi�er, and last
column are HOD predictions. Red square represents the size of the boxes taken as input by our models.

5.3 Two-Point Correlation and Power
Spectrum

It is a standard practice in cosmology to extract information from
observations via summary statistics. The most commonly used
statistics is the two-point correlation function � (r ), de�ned as the
excess probability, compared with that expected for a random distri-
bution, of �nding a pair of galaxies at a separation. It measures how
the actual distribution of galaxies deviates from a simple random
distribution. The power spectrum, P(k), is the Fourier transform of
the two-point correlation function:

� (|r |) = h�A(r 0)�B (r 0 + r )i

P(|k |) =
π

d3r � (r )eik ·r (4)

These two statistics are very important in cosmology, because
they allow to extract all the information embedded into Gaussian
density �elds, as our Universe resembles on large-scales or at earlier
times. In this paper we focus our attention on the power spectrum.
We de�ne the transfer function, T (k), as

T (k) =

s
Ppred(k)
Ptarget(k)

(5)

and use it to quantify the performance of the models against the
ground truth.

Figure. 8 shows the power spectrum and transfer function for
the di�erent models. Our two-phase model with Inception+R2Unet
manages to reproduce the clustering of galaxies of the original data.

Interestingly, it manages to obtain a good �t on a large range of
scales, even though it is trained on relatively "small" sub-boxes.
Comparing to the HOD results, our model achieves nearly the
same performance when k < 1 h/Mpc, and outperforms when
k > 1 h/Mpc. This is consistent with the fact that HOD is not
being designed to work well on small scales. While the P(k) of the
benchmark method has signi�cantly di�er from the target’s at k =
1h/Mpc, P(k) from our two-phase approach with Inception+R2Unet
only begins to di�er from the target at k ⇡ 8 h/Mpc. This is likely
due to the fact that the �eld is highly non-linear at those scales,
which makes the model harder to learn. Furthermore, the fact that
the galaxies are approximately poisson distributed produce a ‘shot-
noise’ �oor. This a�ects the power spectra prominently on small
scales: it adds a white component, 1/n̄�al , to the power spectra,
where n̄�al is the average number density of the galaxies in the
simulation box. Its e�ect can be clearly seen in Fig. 8.

5.4 Three-Point Correlation and Bispectrum
The Universe, on large-scales, resembles a Gaussian �eld, and there-
fore, can be fully characterized by its 2pt correlation function or
power spectrum. However, on small scales, non-linear gravitational
evolution changes the density �eld into a non-Gaussian �eld. In or-
der to characterize the spatial distribution of the Universe on small
scales, where most of the cosmological information lies, higher-
order statistics are needed. Here we concentrate on the bispectrum,
the Fourier equivalent of 3 point correlation function, de�ned as

B(k1,k2,k3)� (k123) = h�k1�k2�k3 i (6)
7

— Input, N-body without neutrinos  
— Truth, N-body with massive neutrinos 
— Prediction with ML 
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Questions and Challenges
It seems like the model is predicting quite well, and quite 
fast.

Why does it work?

How can we interpret the model learnt in ML?

Do we understand where the information is coming from?

Can we deduce what are the important features to predict 
cosmological simulations correctly?

Can we understand the physics underpinning?
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ML to predict faster standard and non 
standard cosmological simulation 

• Neutrino simulations within a mass range.
• Modified gravity simulations.
• N-body simulations with generic non-Gaussian initial conditions.
• Hydrodynamical simulations …..

in order to

—  Study the impact of non-standard parameters on standard 
cosmological simulations.
— Understand the physics underpinning.
— Deduce the important features to predict cosmological 
simulations correctly.
— Make prediction of theories.



Summary
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Cosmological data can be used to constrain neutrino properties, 
in particular the absolute scales of neutrino masses. 

Neutrino masses leave key signatures in cosmological 
observables.

Cosmology provides tightest constraints on sum of ν masses,   
Σmν       0.12 − 0.15 eV (assuming ΛCDM).

 
It is time to start worrying about scale-dependent galaxy bias 
when using galaxy clustering measurement.

ML potential tool to solve major problems in cosmology. 

Data	on	flavour	oscilla;ons	do	not	fix	the	absolute	scale	of	neutrino	masses	
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CMB experiments 
• Ground based: CMB S4, SO 
• Satellites: LiteBIRD, CORE.

Large-scale structure surveys 
• SDSS:  3 million of objects, 3-D map of the Universe 
• DESI: 10 million of galaxies, a 3-D map of the Universe 
• DES: 100 million of galaxies,  3-D map of the Universe 
• LSST: 20 billion galaxies, 3-D map of the Universe 
• Euclid: space mission 
• SKA: black holes and pulsar 
• WFIRST: space mission

SPT

Euclid

SDSS

PROPOSED SATELLITES
CORE is a proposed satellite 
for the upcoming M5 ESA call 
(October 2016). 

At the moment 3 different 
experimental configurations 
are under study. 

With respect to LiteBird: 

- higher cost 

- better angular resolution of 
6’ (results do not rely on 
delensing from CIB or 
LSST). 

- Launch >2028

CORE

PROPOSED SATELLITES
Litebird is a JAXA/NASA proposal in phase A. 
The telescope has a small angular resolution 
(0.5 deg @ 100 GHz). This experiment will 
mainly measure the large angular scale 
polarization (2<l<200).

From CMB Alone
Combining 
with LSST 
(2020-2030)

Errard et al, JCAP03(2016)052

LiteBIRD

SKA
LSST

WFIRST

Cosmology in 2020

Simons Array/POLARBEAR

Atacama Cosmology Telescope

Simons Observatory

• ACT and the Simons Array will continue to operate independently until the end of the 
current MSIP awards (2018/2019). 

• In the meantime, they will begin to develop and share site infrastructure. 
• CLASS is not currently part of the Simons Observatory.   We will work to share 

infrastructure.

Next:  The Simons Observatory 
Combination of the ACT and Simons Array Teams

Sloan Digital Sky Survey

Hobby-Eberly Telescope 
Dark Energy EXperiment

Subaru Hyper Suprime Cam and 
Prime Focus Spectrograph 

South Pole Telescope

Atacama Cosmology 
Telescope

Planck

Dark Energy Survey Large Synoptic Survey 
TelescopeLarge-scale 

structure surveys

Cosmic 
microwave 
background 
experiments

Euclid

WFIRST

Future detection via large-scale structure datasets 

CMB ``Stage IV’’SPHEREX

e.g. Snowmass 2013 1309.5383

�∑m�∼ 0.02eV



ML to extract more information from the 
cosmological survey 

Predict cosmological parameters directly from the distribution of matter

Ravanbakhsh, Oliver, Price, Ho, Schendier & Poczos ICML 2016

Neutrino Cosmology- E. Giusarma

Can we use such models to 
estimate the parameters of 
our own Universe?

Integrate traditional statistical methods with modern ML models.  



Deep learning: Convolutional Neural 
Network (CNN)

• CNN consists of an input and an output 
layer, as well as multiple hidden layers.  

• The hidden layers consist of convolutional 
layers, RELU layer i.e. activation function, 
pooling layers, fully connected layers and 
normalization layers.

Why convolutional?  
Convolution is a process where the network tries to label the input signal by referring to 
what it has learned in the past.

Neutrino Cosmology- E. Giusarma



• Definition: When two (or more) variables are correlated, it is conventional to say 
that they are degenerate with the other parameter(s).

•  This is both “good” and “bad”. The “bad” part is that the parameter are allowed to 
take any value along the degeneracy direction. The “good” news is that, if A and 
B are degenerate, even if there is no experiment that can constrain parameter A, 
you can improve limits on the allowed values of A indirectly, by designing an 
experiment that can constrain parameter B.

• Note that this is not an intrinsic property of the parameters themselves, but 
of their posterior distributions: we will see that two parameters might be 
degenerate in one experiment (CMB) but not in other experiment (CMB+BAO)

Degeneracies

Neutrino Cosmology- E. Giusarma



Cosmological parameter estimation
Μοdel θ
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Bayes’ rule 

θ = {Ωc, Ωb, τ, ns, As, H0, Σmν, …}

Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` � 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-⇤CDM theoretical spectrum best fit to the Planck

TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` � 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-⇤CDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization e�ciencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization e�ciency at 143 ⇥ 143, c

EE

143, derived
from the EE spectrum is about 2� lower than that derived from
T E (where the � is the uncertainty of the T E estimate, of the
order of 0.02). This di↵erence may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters di↵erently in EE and T E. We have investi-
gated ways of correcting for e↵ective polarization e�ciencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization e�ciencies fixed to the e�ciencies ob-
tained from the fits on EE:

⇣
c

EE

100

⌘
EE fit

= 1.021;
⇣
c

EE

143

⌘
EE fit

=

0.966; and
⇣
c

EE

217

⌘
EE fit

= 1.040. The CamSpec likelihood, de-
scribed in the next section, uses spectrum-based e↵ective polar-
ization e�ciency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization e�ciency estimates
(which essentially di↵ers by applying to EE the e�ciencies
given above, and to T E the e�ciencies obtained fitting the T E

spectra,
⇣
c

EE

100

⌘
TE fit

= 1.04,
⇣
c

EE

143

⌘
TE fit

= 1.0, and
⇣
c

EE

217

⌘
TE fit

=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ⇤CDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization e�ciencies, we find small shifts in the base-⇤CDM
parameters compared with ignoring spectrum-based polariza-
tion e�ciency corrections entirely; the largest of these shifts
are +0.5� in !b, +0.1� in !c, and +0.3� in ns (to be com-
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The measurements in cosmological datasets are translated to likelihoods. The total 
likelihood, assuming the measurements of the experiments are not correlated (usually the 
case), is the product of individual likelihoods.

Antonio J. Cuesta                                                                                              “Introduction to CosmoMC” Part I  

Likelihood and !2 (Wilks’ Theorem)

• The measurements in cosmological datasets are translated to likelihoods. 
The total likelihood, assuming the measurements of the experiments are not 
correlated (usually the case), is the product of individual likelihoods.

• However in practice, CosmoMC uses the log of the likelihood (with opposite 
sign), which is closely related to the value of the χ2 distribution. These are 
related by the equation:

• Where the χ2 for simple cases is just (measurement-theory)2/error2, or more 
generally χ2 = (D-T)t !-1 (D-T) where D is a vector of data measurements and T 
is the theory vector generated at each MCMC step. ! is the covariance 
matrix whose elements are the covariances between parameters !={σθi,θj}, so 
that the diagonal elements are σ2θi and the off-diagonal are σθiθj = ρij σθi σθj

" � exp(-!2/2)

χ2 = (D-T)t 𝐂-1 (D-T)
D = vector of data measurements
𝐂 = covariance matrix 
Τ =theory vector generated at each MCMC 
step
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Future sensitivities on neutrino masses

Neutrino physics from precision cosmology 26

future, whereas neutrinoless double beta decay experiments may or may not find evidence, depending on the
nature of the hierarchy and exact Majorana phase structure.

However, it is also entirely possible that neutrino masses are degenerate in which case cosmology should
provide a high significance detection within the next decade. Furthermore this possibility is interesting
because both beta decay and neutrinoless double beta decay experiments hold the potential to achieve a
positive detection. Having measurements of three different new neutrino mass observables, mνe , mββ, and
∑

mν will provide a plethora of new information on neutrino physics, including the values of Majorana
phases.

Probe Potential sensitivity (short term) Potential sensitivity (long term)
CMB 0.4-0.6 0.4
CMB with lensing 0.1-0.15 0.04
CMB + Galaxy Distribution 0.2 0.05-0.1
CMB + Lensing of Galaxies 0.1 0.03-0.04
CMB + Lyman-α 0.1-0.2 Unknown
CMB + Galaxy Clusters - 0.05
CMB + 21 cm - 0.0003-0.1

Table 1. Future probes of neutrino mass, as well as their projected sensitivity to neutrino mass. Sensitivity
in the short term means achievable in approximately 5-7 years, while long term means 7-15 years.

8. Detection of the cosmic neutrino background

Standard model physics likewise predicts the presence of a Cosmic Neutrino Background (CνB) with a well
defined temperature of Tν ∼ (4/11)1/3Tγ . While it remains undetected in direct experiments, the presence
of the CνB is strongly hinted at in CMB data. The homogeneous CνB component has been detected at
the 4-5σ level in the WMAP data. Furthermore, this component is known to be free-streaming, i.e. to
have an anisotropic stress component consistent with what is expected from standard model neutrinos (see
[121, 122, 123, 124, 125, 126, 127]). Finally the standard model neutrino decoupling history is also confirmed
by Big Bang Nucleosynthesis (BBN), the outcome of which depends on both the energy density and flavour
composition of the CνB.

While this indirect evidence for the presence of a CνB is important, a direct detection remains an
intriguing, but almost impossible goal. The most credible proposed method is to look for a peak in beta
decay spectra related to neutrino absorption from the CνB [128, 129, 130], although many other possibilities
have been discussed [131, 132, 133, 73, 134, 135, 136, 137].

Near the electron endpoint energy there should be a small contamination from anti-neutrino capture
from the background. This process is monoenergetic, and the electron energy should be Ee ≃ Q + mν .
Thus, the separation between the end of the beta spectrum and the absorption peak is 2mν. Depending on
the energy resolution and the source luminosity this may or may not be visible in future experiments. The
problem was recently studied in more detail in [129], with the conclusion that currently planned experiments
like KATRIN are still several orders of magnitude away from a detection. Nevertheless, the method is in
principle feasible and so far seems the most promising way to detect the neutrino background.

The neutrino absorption method was first investigated by Weinberg [128], based on the possibility that
the primordial neutrino density could be orders of magnitude higher than normally assumed due to the
presence of a large chemical potential. Although a large chemical potential has been ruled out because it is
in conflict with BBN and CMB, the method may still work and recently there has been renewed interest in
detecting the CνB using beta unstable nuclei.

Although the direct detection of the CνB is already very challenging, one might speculate on the
possibility that in the more distant future anisotropies in the CνB will be detectable.

Hannestad, Progr. Part. Nucl. Phys. 65 (2010) 185
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2

vational and theoretical side, we believe the time is ripe to
move the exciting research program of astrophysical and
cosmological studies with CMB lensing cross-correlations
one step further, by uncovering the matter distribution
and its relation to the distribution of its luminous trac-
ers more precisely than ever. It is our aim in this Letter
to use CMB lensing-galaxy cross-correlation to constrain
for the first time the scale-dependence of the galaxy bias.

Theory The CMB lensing consists of the gravitational
deflection of the CMB photons by the large scale distri-
bution of matter in the Universe. the mass distribution
along their path through the Large Scale Structure (LSS).
Since the CMB lensing maps contain the integrated in-
formation of the matter distribution in all redshift up to
the last scattering surface, it can be used as a probe of
the matter density of the Universe. In particular, the
calculation of the cross-correlation between CMB lensing
potential and the surveys of galaxy is a unique tool to
constraint cosmology and the evolution of the growth of
structures.

If we assume a ⇤CDM model, we can write the two-
points statistics of the galaxy-CMB lensing correlation in
Limber approximation as:
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where �(z) is the comoving distance at redshift z, fg(z)
is the redshift distribution of galaxies and W

k(z) is the
kernel for CMB lensing converge for a flat universe [2, 3]:
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in which H(z) is the Hubble parameter at redshift z and
H0 and ⌦m,0 represent the Hubble constant and the mat-
ter density at present time.

In equation 1 Pmg(k, z) is the matter-galaxy 3D cross-
power spectrum defined as:

Pmg(k, z) = b(k)P (k, z) , (3)

in which P (k, z) is the non-linear matter power spectrum
at redshift z and wavenumber k and b(k) is known as
scale-dependent bias which relates the density of galaxies
to the underlying dark matter density field. In Fourier
space it can be expressed as ( [4, 5]):

b1(k) = b10 +
sb11

s1
k
2
, (4)

in which b10 is the scale-independent coe�cient, b11 is the
scale-dependent coe�cient and s/s1 is a normalization
factor that makes dimensionless b1(k). In the previous
equation s = �

2

0
is the variance in the smoothed field at

scale R and s1 = �
2

1
is the first moment variance at same

scale R. We can generalize the definition of variance as
follows:

sj = �
2
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Z
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2+2j

2⇡2
P (k)W 2(kR) , (5)

where W (kR) is the Gaussian window function:
W (kR) = exp(�k

2
R

2
/2).

In this work we will consider a scale-dependent bias of
the form:

b(k) = abias + cbiask
2
, (6)

where abias is the scale independent factor and cbias is
defined as:

cbias =
s

s1
b11 . (7)

We take into account for a normalization factor of the
order of 14(Mpc/h)2 obtained after considering the
BOSS DR12 CMASS sample.

Methodology and Data The cosmological model we as-
sume is the standard ⇤CDM model, described by the six
usual parameters: the current energy density of baryons
and of cold dark matter (⌦bh

2, ⌦ch
2), the ratio between

the sound horizon and the angular diameter distance at
decoupling (⇥s), the reionization optical depth (⌧), the
scalar spectral index (ns) and the amplitude of the pri-
mordial spectrum As plus two parameters that describe
the scale-independent and scale-dependent bias (abias,
cbias) and the sum of the masses of the three active neu-
trinos (M⌫).
We base our analyses on the measurements of the CMB

temperature, polarization and cross-correlation spectra
from the Planck 2015 release [6, 7]. We consider the full
temperature data combined with the large scale polariza-
tion measurements (i.e low-` polarization measurements
in the range 0 < ` < 29). We refer to this data as base.
Moreover we also add to this combination the small-scale
TE and EE polarization spectra as measured by Planck
High Frequency Instrument (HFI) and we name this data
set as basepol. Notice that, the results obtained with this
combination of data should be regarded as less conser-
vative because of a possible residual systematics in the
polarization spectra at high multipoles.
Together with Planck CMB data, we include the 3D

galaxy power spectrum shape from the Baryon Oscil-
lation Spectroscopic Survey (BOSS) Data Release 12
CMASS sample [8–11], as previously exploited in [12].
We model the theoretical galaxy power spectrum as
P

g
th

= b(k)Pm
HF⌫(k, z) + P

s

HF⌫ , where b(k) is the scale-
dependent bias described by eq. 6, P

m
HF⌫(k, z) is the

non-linear matter power spectrum computed using the
HaloFit method [13, 14] in presence of massive neutri-
nos [15] and P

s

HF⌫ is the shot-noise contribution. We
consider the same range of wavenumber used in [12] that
extend from 0.03 h/Mpc to 0.2 h/Mpc.
Finally we consider the angular power spectrum mea-

surements as calculated in [16] by combining the CMB
lensing convergence map [17] measurements from Planck
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responsible for astrometric calibration (Pier et al. 2003),
photometric reduction (Lupton et al. 2001), and photo-
metric calibration (Padmanabhan et al. 2008). Bright
galaxies, luminous red galaxies (LRGs), and quasars
are selected for follow-up spectroscopy (Strauss et al.
2002; Eisenstein et al. 2001; Richards et al. 2002;
Blanton et al. 2003; Smee et al. 2013). The data used
in this survey were acquired between August 1998 and
May 2013.
CMASS (Anderson et al. 2014) (z = 0.43 − 0.7) con-

sists of 690,826 galaxies over an area of 8498 deg2, has
a mean redshift of 0.57, and is designed to be stellar-
mass-limited at z > 0.45. Each spectroscopic sector,
or region covered by a unique set of spectroscopic tiles
(Aihara et al. 2011), was required to have an overall com-
pleteness (the fraction of spectroscopic targets that were
observed) over 70% and a redshift completeness (the
fraction of observed galaxies with good spectra) over
80%. We use these galaxies to construct an overden-
sity map δi = (ni − n̄)/n̄, where i denotes the pixel on
the sky. ni =

∑

j∈pixel iwj , where wj is the systematic
weightAnderson et al. (2014) of galaxy j. The map is
given a HEALPix pixelization with Nside = 1024. Note
that we do not weigh the pixels by their observed area
because the HEALPix pixels are much smaller than the
observed sectors for which the completeness is computed,
and we did not want to introduce extra power due to
possible errors in the completeness on small scales. Also,
the BOSS survey, which includes the CMASS sample,
has an average completeness of over 97%, so this should
be a very small effect.

4. ANGULAR POWER SPECTRA

4.1. Theory

We model the theoretical galaxy-CMB lensing con-
vergence angular cross-power spectrum and the galaxy
clustering angular auto-power spectrum using standard
methods. We assume ΛCDM with parameters consistent
with Planck 2013 (Planck Collaboration et al. 2014a)
and BOSS Data Release 11 (Anderson et al. 2012). We
use these models to estimate statistical errors from mocks
and systematic corrections to EG (see Section 5). How-
ever, our measurement of EG along with errors from jack-
knife resampling, which we use in our final result, does
not use our power spectrum models and is independent
of ΛCDM.
Using the Limber approximation for small scales (ℓ !

10) and assuming the ΛCDM model, the galaxy-CMB
lensing convergence angular cross-power spectrum can
be written as

Cκg
ℓ =

3H2
0Ωm,0

2c2

∫ z2

z1

dzW (z)fg(z)χ
−2(z)(1 + z)

×Pmg

[

ℓ

χ(z)
, z

]

, (4)

where fg(z) is the galaxy redshift distribution,
W (z) = χ(1 − χ(z)/χCMB) is the CMB lensing kernel,
χ(z) (χCMB) is the comoving distance out to redshift
z (the CMB surface-of-last-scattering redshift zCMB =
1100), and Pmg(k, z) is the matter-galaxy 3D cross-
power spectrum as a function of z and wavenumber
k (Hirata et al. 2004). The cosmological parameters

present are the Hubble parameter today H0 and the
current matter density parameter Ωm,0. The galaxy
redshift distribution for CMASS is shown in Fig. 1 of
Anderson et al. (2014). The galaxy clustering angular
auto-power spectrum can be written as

Cgg
ℓ =

∫ z2

z1

dz
H(z)

c
f2
g (z)χ

−2(z)Pgg

[

ℓ

χ(z)
, z

]

, (5)

where H(z) is the Hubble parameter at redshift z and
Pgg(k, z) is the galaxy 3D auto-power spectrum.

4.2. Mock Galaxy Catalogues from N -body Simulations

We compute the matter power spectra Pmg(k, z) and
Pgg(k, z) using N-body simulations. The N -body sim-
ulation runs using the TreePM method (Bagla 2002;
White et al. 2002; Reid et al. 2014). We use 10 real-
izations of this simulation based on the ΛCDM model
with Ωm = 0.292 and h = 0.69. These simulations
are in a periodic box of side length 1380h−1Mpc and
20483 particles. A friend-of-friend halo catalogue was
constructed at an effective redshift of z = 0.55. This
is appropriate for our measurement since the galaxy
sample used has effective redshift of 0.57. We use a
Halo Occupation Distribution (HOD) (Peacock & Smith
2000; Seljak 2000; Benson et al. 2000; White et al. 2001;
Berlind & Weinberg 2002; Cooray & Sheth 2002) to re-
late the observed clustering of galaxies with halos mea-
sured in the N -body simulation. We have used the HOD
model proposed in Beutler et al. (2014) to populate the
halo catalogue with galaxies.

⟨Ncen⟩M = 1
2

[

1 + erf
(

logM−logMmin

σlog M

)]

⟨Nsat⟩M = ⟨Ncen⟩M

(

M
Msat

)α

exp
(

−Mcut

M

)

, (6)

where ⟨Ncen⟩M is the average number of central galax-
ies for a given halo mass M and ⟨Nsat⟩M is the av-
erage number of satellites galaxies. We use the HOD
parameter set (Mmin = 9.319 × 1013M⊙/h,Msat =
6.729× 1013M⊙/h,σlogM = 0.2,α = 1.1,Mcut = 4.749×
1013M⊙/h) from Beutler et al. (2014). We have popu-
lated central galaxies at the center of our halo. The satel-
lite galaxies are populated with radius (distance from
central galaxy) distributed as per the NFW profile out
to r200 and the direction is chosen randomly with a uni-
form distribution.

5. ESTIMATORS

We estimate Cκg
ℓ and Cgg

ℓ along with errors using
the Planck CMB lensing map and CMASS galaxy map.
Since the lensing field is not Gaussian, least-squares es-
timates of Cκg

ℓ will be slightly biased, but not signif-
icantly compared to our measurement errors. We use
a pseudo-Cℓ estimator of the form (Lewis et al. 2011;
Planck Collaboration et al. 2014b)

Ĉκg
ℓ =

1

(2ℓ+ 1)fκg
sky

ℓ
∑

m=−ℓ

gℓmκ
∗
ℓm , (7)

where fκg
sky is the sky fraction common to the galaxy cat-

alog and the CMB lensing convergence map, κℓm is the

= bcross(k) Pmm(k,z) Matter-galaxy 3D cross- power spectrum

New approach
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vational and theoretical side, we believe the time is ripe to
move the exciting research program of astrophysical and
cosmological studies with CMB lensing cross-correlations
one step further, by uncovering the matter distribution
and its relation to the distribution of its luminous trac-
ers more precisely than ever. It is our aim in this Letter
to use CMB lensing-galaxy cross-correlation to constrain
for the first time the scale-dependence of the galaxy bias.

Theory The CMB lensing consists of the gravitational
deflection of the CMB photons by the large scale distri-
bution of matter in the Universe. the mass distribution
along their path through the Large Scale Structure (LSS).
Since the CMB lensing maps contain the integrated in-
formation of the matter distribution in all redshift up to
the last scattering surface, it can be used as a probe of
the matter density of the Universe. In particular, the
calculation of the cross-correlation between CMB lensing
potential and the surveys of galaxy is a unique tool to
constraint cosmology and the evolution of the growth of
structures.

If we assume a ⇤CDM model, we can write the two-
points statistics of the galaxy-CMB lensing correlation in
Limber approximation as:

C
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where �(z) is the comoving distance at redshift z, fg(z)
is the redshift distribution of galaxies and Pmg(k, z) is
the matter-galaxy 3D cross-power spectrum defined as:

Pmg(k, z) = b(k)P (k, z) , (2)

in which P (k, z) is the non-linear matter power spectrum
at redshift z and wavenumber k and b(k) is the scale-
dependent bias. In equation ?? W

k(z) is the kernel for
CMB lensing converge for a flat universe [? ? ]:

W
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2c

H
2
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where H(z) is the Hubble parameter at redshift z and H0

and ⌦m,0 represent the Hubble constant and the matter
density at present time. As a comparison, we also con-
sider the galaxy clustering angular auto-spectrum given
by:
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in which Pgg is the galaxy 3D auto-power spectrum de-
fined as:

Pgg(k, z) = b
2(k)P (k, z) . (5)

In equation ?? and ?? the quantity b(k) is known as
scale-dependent bias which relates the density of galaxies

to the underlying dark matter density field. In Fourier
space it can be expressed as ( [? ? ]):

b1(k) = b10 +
sb11

s1
k
2
, (6)

in which b10 is the scale-independent coe�cient, b11 is the
scale-dependent coe�cient and s/s1 is a normalization
factor that makes dimensionless b1(k). In the previous
equation s = �

2
0 is the variance in the smoothed field at

scale R and s1 = �
2
1 is the first moment variance at same

scale R. We can generalize the definition of variance as
follows:

sj = �
2
j =

Z
dk

k
2+2j

2⇡2
P (k)W 2(kR) , (7)

where W (kR) is the Gaussian window function:
W (kR) = exp(�k

2
R

2
/2).

In this work we will consider a scale-dependent bias of
the form:

b(k) = abias + cbiask
2
, (8)

where abias is the scale independent factor and cbias is
defined as:

cbias =
s

s1
b11 . (9)

We take into account for a normalization factor of the
order of 14(Mpc/h)2 obtained after considering the
BOSS DR12 CMASS sample.

Data PLANCK + CMASS +CROSS-
CORRELATION FROM ANTHONY ET AL.The
non-linear matter power spectrum of equations ?? and ??
is computed using the HaloFit method with the CAMB
code [? ].
Results First we send some simple runs using just

Planck data, together with C
gg
` and C

g
` . For C

g
` , we

remove the first 5 data points as they are clearly a↵ected
by systematics which lead to a reduction of power on
large scales (the whole dataset is still a↵ected to some
extent, but the amount of contamination was particu-
larly severe for the first 5 data points). The results are
shown in Tab. ?? and Figs. ??, ??.
The fact that C

g
` is a↵ected by residual systematics

leading to a power deficit on large scales is evident on the
results. The paucity of power on large scales is reflected
in a lower value of abias compared to that recovered from
C

gg
` . To accommodate at the same time a lack of power

on large scales but not on small scales, the data is pre-
ferring non-zero and large values of cbias. All of this is
reflected in poor neutrino mass constraints given the de-
generacy between M⌫ and cbias, or in a spurious evidence
for neutrino masses when C

g
` is combined with C

gg
` .
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• Lensing-galaxy correlation 
using pseudo-Cl estimator 

• Deviates from prediction, 
particularly at large scales 
(2.5σ overall) 

• Deficit seen in other Planck 
lensing analyses 

• Deficit also seen in DES-
SPT lensing analysis
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• D e v i a t i o n f r o m 
prediction, particularly at 
large scales  

• Deficit seen in other 
Planck lensing analyses. 

• Deficit also seen in DES- 
SPT lensing analysis. 
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    H0

2

Parameter Prior
⌦bh

2 [0.005, 0.1]
⌦ch

2 [0.001, 0.99]
⇥s [0.5, 10]
⌧ [0.01, 0.8]
ns [0.8, 1.2]

log[1010As] [2, 4]P
m⌫ (eV) [0.06, 3]

m
e↵
s (eV) [0,3]
Ne↵ [3.046,10]

TABLE I: External priors on the cosmological parameters as-
sumed in this paper.

consider a ⇤CDM model plus neutrino masses (
P

m⌫),
then we also consider the possibility of having additional
relativistic degrees of freedom (

P
m⌫ andNe↵ , withNe↵ -

3.046 extra relativistic species), and lastly, we consider
the possibility of massive sterile neutrinos (

P
m⌫ , Ne↵

and m
e↵
s , with Ne↵ -3.046 extra massive species with a

mass m
e↵
s ). For all these parameters, we use the flat

priors listed in Table I.

A. Cosmological data

We constrain the cosmological parameters previously
described by using several combination of data sets. Our
CMB measurements are those from the full Planck 2015
release on temperature and polarization CMB angular
power spectra [1, 6]. The large angular scale temperature
and polarization measured by the Planck LFI experiment
is combined with the small-scale TT temperature spec-
trum measured by Planck HFI, and we refer to this data
set as Planck. Moreover, when adding to this combi-
nation the small-scale TE and EE polarization spectra
measured by Planck HFI, we shall refer to this data set
as Planck pol.

We consider also measurements of the large scale
structure of the universe in their geometrical form, the
Baryon Acoustic Oscillations (BAO) data. We include
the 6dFGS [7], SDSS-MGS [8], BOSS LOWZ [9] and
CMASS-DR11 [9] measurements as in [1], referring to
the combination of all of them as BAO.

Then, we study the impact of the most relevant
low redshift priors (concerning neutrino physics limits).
First, we impose two di↵erent gaussian priors on the Hub-
ble constant. Then, we consider the second Planck clus-
ter catalog obtained through the Sunyaev-Zel’dovich (SZ)
e↵ect, analysing the impact of the di↵erent cluster mass
biases, referring to this data set as SZ. Finally, we study
the e↵ect of lowering the prior on the reionization optical
depth ⌧ , as preferred by astrophysical measurements. In
particular, we use two gaussian priors, ⌧ = 0.06 ± 0.01
and ⌧ = 0.05± 0.01.

Our constraints are obtained making use of the lat-
est available version of the Monte Carlo Markov Chain

FIG. 1: 68% and 95% CL allowed regions in the (
P

m⌫ , H0)
plane illustrating the e↵ect of the low redshift priors studied
here.

(MCMC) package cosmomc [10, 11] with a convergence
diagnostic based on the Gelman and Rubin statistics.
This includes the support for the Planck data release
2015 Likelihood Code [12] implementing an optimal sam-
pling [11]. The foreground parameters are varied as in
Refs. [1, 12].

III. LOW-REDSHIFT PRIORS

A. Hubble constant priors

We consider here two possible constraints on the Hub-
ble constant H0. The first prior on H0 arises from the
recalibration of the authors of Ref. [13] combined with
the original Hubble Space Telescope (HST) measure-
ments [14], which leads to the value ofH0 = 73.0±2.4 km
s�1 Mpc�1, hereafter H073p0 (see also Refs. [15, 16]).
The second possible choice exploited here for the prior
on the Hubble constant arises from a recent reanalysis
of [17]. The former yields a value of H0 = 70.6 ± 3.3
km s�1 Mpc�1 (hereafter H070p6), in better agreement
with Planck 2015 findings, which has been dubbed as a
conservative estimate of the Hubble constant. In the fol-
lowing we shall explore the impact of these two possible
priors on the neutrino parameters.
There exists a strong, well-known degeneracy between

the neutrino mass and the Hubble constant (see e.g. [18]
and Fig. 1). In the absence of an independent mea-
surement of H0, the change in the CMB temperature
anisotropies induced by the presence of massive neutri-

68% and 95% CL allowed regions in the 
(Σmν , H0 ) plane.
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the neutrino mass bounds. For clarity, all the denomi-
nations of the combinations of datasets we consider are
summarized in Tab. II.

All the BAO measurements used in this work are tab-
ulated in Tab. III. Note that we do not include BAO
measurements from the DR7 main galaxy sample [141]
or from the cross-correlation of DR11 quasars with the
Ly↵ forest absorption [142], and hence our results are
not directly comparable to other existing studies which
included these measurements.

D. Hubble parameter measurements

Direct measurements of H0 are very important when
considering bounds on M⌫ . With CMB data alone, there
exists a strong degeneracy between M⌫ and H0 (see e.g.
[143]). When M⌫ is varied, the distance to last scattering
changes as well. Defining !b ⌘ ⌦bh

2, !c ⌘ ⌦ch
2, !m ⌘

⌦mh
2, !r ⌘ ⌦rh

2, !⌫ ⌘ ⌦⌫h
2, within a flat Universe,

this distance is given by:

� = c

Z
zdec

0

dzq
!r(1 + z)4 + !m(1 + z)3 +

�
1� !m

h2

� ,(17)

where !m = !c + !b + !⌫ . The structure of the CMB
acoustic peaks leaves little freedom in varying !c and
!b. Therefore, for what concerns the distance to the last
scattering, a change in M⌫ can be compensated essen-
tially only by a change in h or, in other words, by a
change inH0. This suggests thatM⌫ andH0 are strongly
anti-correlated: the e↵ect on the CMB of increasing M⌫

can be easily compensated by a decrease in H0, and vice
versa.

In light of the above discussion, we expect a prior on
the Hubble parameter to help pinning down the allowed
values of M⌫ from CMB data. Here, we consider two dif-
ferent priors on the Hubble parameter. The first prior we
consider is based on a reanalysis of an older measurement
based on the Hubble Space Telescope, the original mea-
surement being H0 = (73.8 ± 2.4) km s�1Mpc�1 [144].
The original measurement showed a ⇠ 2.4� tension
with the value of H0 derived from fitting CMB data
[39, 70]. The reanalysis, conducted by Efstathiou in
Ref. [145], used the revised geometric maser distance
to NGC4258 of Ref. [146] as a distance anchor. This
reanalysis obtains a more conservative value of H0 =
(70.6 ± 3.3) km s�1Mpc�1, which agrees with the ex-
tracted H0 value from CMB-only within 1�. We refer to
this prior as H070p6.

The second prior we consider is based on the most re-
cent HST 2.4% determination of the Hubble parameter
in Ref. [147]. This measurement benefits from more than
twice the number of Cepheid variables used to calibrate
luminosity distances, with respect to the previous anal-
ysis [144], as well as from improved determinations of
distance anchors. The measured value of the Hubble pa-
rameter is H0 = (73.02 ± 1.79) km s�1Mpc�1, which is

in tension with the CMB-only H0 value by 3�. We refer
to the corresponding prior as H073p02. 9

E. Optical depth to reionization

The first generation of galaxies ended the dark ages of
the Universe. These galaxies emitted UV photons which
gradually ionized the neutral hydrogen which had ren-
dered the Universe transparent following the epoch of
recombination, in a process known as reionization (see
e.g. Ref. [149] for a review). So far, it is not entirely
clear when cosmic reionization took place. Cosmological
measurements can constrain the optical depth to reion-
ization ⌧ , which, assuming instantaneous reionization (a
very common useful approximation), can be related to
the redshift of reionization zre.
Early CMB measurements of ⌧ from WMAP favored

an early-reionization scenario (zre = 10.6± 1.1 in the in-
stantaneous reionization approximation [150]), requiring
the presence of sources of reionization at z & 10. This
result was in tension with observations of Ly-↵ emit-
ters at z ' 7 (see e.g. [151–155]), that suggest that
reionization ended by z ' 6. However, the results deliv-
ered by the Planck collaboration in the 2015 public data
release, using the large-scale (low-`) polarization obser-
vations of the Planck Low Frequency Instrument (LFI)
[91] in combination with Planck temperature and lensing
data, indicate that ⌧ = 0.066± 0.016 [39], corresponding
to a significantly lower value for the redshift of instan-
taneous reionization: zre = 8.8+1.2

�1.1
(see also [156] for an

assessment of the role of the cleaning procedure on the
lower estimate of ⌧ , and [157] for an alternative indirect
method for measuring large-scale polarization and hence
constrain ⌧ using only small-scale and lensing polariza-
tion maps), and thus reducing the need for high-redshift
sources of reionization [158–162].
The optical depth to reionization is a crucial quan-

tity when considering constraints on the sum of neutrino
masses, the reason being that there exist degeneracies
between ⌧ and M⌫ (see e.g. [17, 21, 28, 88, 163–165]). If
we consider CMB data only (focusing on the TT spec-
trum), an increase in M⌫ , which results in a suppression
of structure, reduces the smearing of the damping tail.
This e↵ect can be compensated by an increase in ⌧ . Due
to the well-known degeneracy between As and ⌧ from
CMB temperature data (which is sensitive to the combi-
nation Ase

�2⌧ ), the value of As should also be increased
accordingly. However, the value of As also determines the
overall amplitude of the matter power spectrum, which
is furthermore a↵ected by the presence of massive neu-
trinos, which reduce the small-scale clustering. If, in

9 We do not include here the latest 3.8% determination of H0

by the H0LiCOW program. The measurement, based on grav-
itational time delays of three multiply-imaged quasar systems,
yields H0 = 71.9+2.4

�3.0
km s�1Mpc�1 [148].

distance to the last scattering 
surface changes

H0: 



We can recover the information on the matter power spectrum at 
non-linear scales and obtain better constraints on the 
cosmological parameters  which are affected by scale-dependent 
bias of the tracers. 

CMB lensing powerful at z~1-5

We can apply this method to 
future surveys of galaxies

What is the advantage of  b(k) ? 
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