Could the H₀ Tension be Pointing Toward the Neutrino Mass Mechanism?

Miguel Escudero Abenza

miguel.escudero@kcl.ac.uk

based on ArXiv:1907.XXXXX with Sam Witte

Beyond 2019 Warsaw

European Research Council Established by the European Commission

Outline

1) The Hubble Tension

2) The Scenario

3) Cosmology with a light Majoron

4) Conclusions

Riess et al 1903.07603

 $H_0 = 74.03 \pm 1.42 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

4.4 σ tension within Λ CDM!

 $H_0 = 67.36 \pm 0.54 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$ Planck 2018 1807.06209

Tension very unlikely generated by CMB systematics

see e.g. Spergel et al 1312.3313, Addison et al 1511.00055, Verde et al 1601.01701, Planck 1608.02487

Riess et al 1903.07603

 $H_0 = 74.03 \pm 1.42 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

4.4 σ tension within Λ CDM!

 $H_0 = 67.36 \pm 0.54 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

Planck 2018 1807.06209

Tension very unlikely generated by CMB systematics

see e.g. Spergel et al 1312.3313, Addison et al 1511.00055, Verde et al 1601.01701, Planck 1608.02487

Local measurements have also been checked against systematics

see e.g. Efstathiou 1311.3461, Cardona et al 1611.06088, Zhang et al 1706.07573, Follin & Knox 1707.01175

Riess et al 1903.07603

 $H_0 = 74.03 \pm 1.42 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

4.4 σ tension within Λ CDM!

 $H_0 = 67.36 \pm 0.54 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

Planck 2018 1807.06209

Tension very unlikely generated by CMB systematics

see e.g. Spergel et al 1312.3313, Addison et al 1511.00055, Verde et al 1601.01701, Planck 1608.02487

Local measurements have also been checked against systematics

see e.g. Efstathiou 1311.3461, Cardona et al 1611.06088, Zhang et al 1706.07573, Follin & Knox 1707.01175

Tension between H₀ local and BAO is also present

see Addison et al 1707.06547, Font-Ribera et al 1906.11628

Riess et al 1903.07603

 $H_0 = 74.03 \pm 1.42 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

4.4 σ tension within Λ CDM!

 $H_0 = 67.36 \pm 0.54 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

Planck 2018 1807.06209

Tension very unlikely generated by CMB systematics

see e.g. Spergel et al 1312.3313, Addison et al 1511.00055, Verde et al 1601.01701, Planck 1608.02487

Local measurements have also been checked against systematics

see e.g. Efstathiou 1311.3461, Cardona et al 1611.06088, Zhang et al 1706.07573, Follin & Knox 1707.01175

Tension between H₀ local and BAO is also present

see Addison et al 1707.06547, Font-Ribera et al 1906.11628

Future measurements from BAO, local, lensing, GW ...

Miguel Escudero (KCL)

 H_0 and the Majoron

Beyond ACDM possibilities:

Early Dark Energy	Poulin, Smith, Karwal, Kamionkowski 1811.04083 Agrawal, Cyr-Racine, Pinner, Randall 1904.01016
Decaying Dark Matter	Bringmann, Kahlhoefer, Schmidt-Hoberg, Walia 1803.03644

- Increasing N_{eff}
- *e.g.* Weinberg 1305.1971

Beyond ACDM possibilities:

Early Dark Energy	Poulin, Smith, Karwal, Kamionkowski 1811.04083 Agrawal, Cyr-Racine, Pinner, Randall 1904.01016

- Decaying Dark Matter Bringmann, Kahlhoefer, Schmidt-Hoberg, Walia 1803.03644
- Increasing N_{eff} e.g. Weinberg 1305.1971

Perhaps the simplest one is to increase *N*_{eff}:

Miguel Escudero (KCL)

Global U(1) Spontaneously Broken Symmetry

Chikashige, Mohapatra, Peccei (1981)

Global U(1) Spontaneously Broken Symmetry

Chikashige, Mohapatra, Peccei (1981)

 $\mathcal{L}_{\rm int} = i\lambda\,\phi\,\bar{\nu}\,\gamma_5\,\nu$

Global U(1) Spontaneously Broken Symmetry

Chikashige, Mohapatra, Peccei (1981)

The Majoron:
$$\phi \qquad \mathcal{L}_{\mathrm{int}} = i\lambda\,\phi\,ar{
u}\,\gamma_5\,
u$$

Extremely feebly interacting: $\lambda \simeq 10^{-13} \frac{m_{\nu}}{0.05 \, {\rm eV}} \frac{246 \, {\rm GeV}}{v_L}$ (type-I seesaw)

Global U(1) Spontaneously Broken Symmetry

Chikashige, Mohapatra, Peccei (1981)

The Majoron:
$$\,\phi\,\,\,\,\,\,\, {\cal L}_{
m int} = i\lambda\,\phi\,ar
u\,\gamma_5\,
u$$

Extremely feebly interacting: $\lambda \simeq 10^{-13} \frac{m_{\nu}}{0.05 \,\mathrm{eV}} \frac{246 \,\mathrm{GeV}}{v_L}$ (type-I seesaw)

Dimension-5 Planck suppressed operators: m_{ϕ}

$$\simeq v_L \sqrt{\frac{v_L}{M_{\rm Pl}}} \lesssim {\rm keV}$$

Rothstein, Babu, Seckel, hep-ph/9301213 Akhmedov, Berezhiani, Mohapatra, Senjanovic hep-ph/9209285

Global U(1) Spontaneously Broken Symmetry

Chikashige, Mohapatra, Peccei (1981)

Extremely feebly interacting: $\lambda \simeq 10^{-13} \frac{m_{\nu}}{0.05 \, {\rm eV}} \frac{246 \, {\rm GeV}}{v_L}$ (type-I seesaw)

Dimension-5 Planck suppressed operators:

$$m_{\phi} \simeq v_L \sqrt{\frac{v_L}{M_{\rm Pl}}} \lesssim \mathrm{keV}$$

Rothstein, Babu, Seckel, hep-ph/9301213 Akhmedov, Berezhiani, Mohapatra, Senjanovic hep-ph/9209285

Parameter Space:

$$10^{-15} < \lambda < 10^{-3}$$

 $0.1 \,\mathrm{eV} < m_{\phi} < \mathrm{MeV}$

Miguel Escudero (KCL)

 H_0 and the Majoron

Only Relevant Process:

provided $\Gamma_{\phi} \geq H(T_{\nu} = m_{\phi}/3)$

Only Relevant Process:

Two main effects:

Chacko, Hall, Okui, Oliver hep-ph/0312267 Non-standard expansion history

Erase the neutrino anisotropic stress

Only Relevant Process:

We solve the full Boltzmann/Liouville equation for the background

We include the full neutrino-majoron Boltzmann hierarchy in CLASS

Miguel Escudero (KCL)

 H_0 and the Majoron

Effects on the CMB

Miguel Escudero (KCL)

Effects on the CMB

Miguel Escudero (KCL)

Miguel Escudero (KCL)

PRELIMINARY

Conclusions

- The H₀ tension: Beyond ΛCDM?
- The specific case of the Majoron:
 - Compelling extension of the SM
 - Couplings from seesaw and mass from gravity
 - Planck sets stringent constraints
 - Ameliorates H₀ tension via $\Delta N_{\rm eff} = 0.11$
 - May solve the tension for:

$$m_{\phi} \sim 0.1 - 1 \,\mathrm{eV}$$

 $v_L \sim 0.1 - 1 \,\mathrm{TeV}$

Questions and Comments?

Thank you for your attention!

Stay tuned for: 1907.XXXXX with Sam Witte!

Miguel Escudero (KCL)

 H_0 and the Majoron

Back Up

Miguel Escudero (KCL)

The Physics: Interaction Strength

The Physics: Neutrino Perturbations

Miguel Escudero (KCL)

The Physics: Power Spectrum

Hubble Constant from the CMB

CMB measurements provide a H₀ prediction from:

$$\theta_s \equiv r_s / D_M(z_\star)$$

$$r_s = \int_{z_\star}^{\infty} \frac{c_s}{H(z')} \, dz'$$

Comoving sound horizon

$$D_M(z) = \int_0^z \frac{1}{H(z')} \, dz'$$

Comoving angular diameter distance

Hubble Constant from the CMB

CMB measurements provide a H₀ prediction from:

$$\theta_s \equiv r_s / D_M(z_\star)$$

$$r_s = \int_{z_\star}^{\infty} \frac{c_s}{H(z')} \, dz'$$

Comoving sound horizon

$$D_M(z) = \int_0^z \frac{1}{H(z')} \, dz'$$

Comoving angular diameter distance

Comoving sound horizon is the easiest thing to modify

Enhance the expansion prior to recombination

Miguel Escudero (KCL)

 H_0 and the Majoron

Neutrino Masses

At least two neutrinos are massive

Miguel Escudero (KCL)

Future Measurements

- 1% local determination of H₀ in the next decade
- Future CMB missions, Simons, Stage-IV experiments
- Expansion History in the next decade:

1+z

Tension is also present in BAO

Addison et al 1707.06547

Miguel Escudero (KCL)

 H_0 and the Majoron

Tension is also present when compared with BAO and SNIa (Parthenon) using $\Omega_b h^2$ from BBN

Miguel Escudero (KCL)

from 1904.01016 Agrawal, Cyr-Racine, Pinner, Randall

Miguel Escudero (KCL)

 H_0 and the Majoron

Neutrino Decoupling

Definition: $N_{\text{eff}} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{\text{rad}} - \rho_{\gamma}}{\rho_{\gamma}}\right)$

SM prediction: $N_{\text{eff}}^{\text{SM}} = 3.045$

1606.06986 de Salas & Pastor hep-ph/0506164 Mangano *et. al.*

Why is it not 3? for an excellent review see hep-ph/0202122 by Dolgov

- 1) Neutrino Decoupling not instantaneous
- 2) Weak Interactions freeze out at T = 2-3 MeV hence, some heating from e⁺e⁻ annihilation
- 3) Finite Temperature QED corrections
- 4) Neutrino oscillations are active at T < 3 MeV

 $n \langle \sigma v \rangle \simeq G_F^2 T^5 \simeq H$ $\delta m_e^2(T), \, \delta m_\gamma^2(T)$

 $\sigma \sim G_F^2 E_u^2$

Simplified approach: Escudero arXiv:1812.05605, JCAP 1902 (2019) 007

Beyond ACDM

Early Universe or late Universe modifications?

Beyond ACDM

Early Universe or late Universe modifications?

BAO measurements point toward an early Universe effect

Miguel Escudero (KCL)