Light Dark Matter from Inelastic Cosmic Ray Collisions

Miguel D. Campos

based on arXiv:1905.05776
in collaboration with Malcolm Fairbairn, Tevong You and James Alvey.

Warsaw, Poland

Beyond GR and the Cosmological SM, July 2019.
The Unexplored Parameter Space.

Motivation

The problem with low mass DM → DD experiments are not sensitive to them.
The problem with low mass DM → DD experiments are not sensitive to them.
The Unexplored Parameter Space.

New Ideas using CRs

- If CRs interact with SIDM, elastic scattering can modify the spectrum of detected CRs on Earth:
The Unexplored Parameter Space.

New Ideas using CRs

- If CRs interact with SIDM, elastic scattering can modify the spectrum of detected CRs on Earth: Reverse Direct Detection.

The Unexplored Parameter Space.

New Ideas using CRs

• If CRs interact with SIDM, elastic scattering can modify the spectrum of detected CRs on Earth: Reverse Direct Detection.

• In the same interaction, momentum is transferred to the DM particles, that receive a boost, increasing the sensitivity of DD:
The Unexplored Parameter Space.

New Ideas using CRs

- If CRs interact with SIDM, elastic scattering can modify the spectrum of detected CRs on Earth: Reverse Direct Detection.
- In the same interaction, momentum is transferred to the DM particles, that receive a boost, increasing the sensitivity of DD: Elastic CRDM.

The Process.

We will consider interactions in the atmosphere and use the fact that the mesons produced have a non-zero probability to decay into dark matter particles:
The Process.

We will consider interactions in the atmosphere and use the fact that the mesons produced have a non-zero probability to decay into dark matter particles:
A cosmic beam-dump experiment.
The Process.

We will consider interactions in the atmosphere and use the fact that the mesons produced have a non-zero probability to decay into dark matter particles:

A *cosmic beam-dump experiment.*
The Process.

More in detail, we will analyse the following processes:

\[p + p \rightarrow \pi^0 \rightarrow \gamma + (V \rightarrow \chi + \chi) \]
The Process.

More in detail, we will analyse the following processes:

\[p+p \rightarrow \pi^0 \rightarrow \gamma + (V \rightarrow \chi + \chi) \]
The Process.

More in detail, we will analyse the following processes:

\[p+p \rightarrow \pi^0 \rightarrow \gamma + (V \rightarrow \chi + \chi) \]

\[p+p \rightarrow \eta^0 \rightarrow \pi^0 + (S \rightarrow \chi + \chi) \]
The Process.

More in detail, we will analyse the following processes:

\[p + p \rightarrow \pi^0 \rightarrow \gamma + (V \rightarrow \chi + \chi) \]

\[p + p \rightarrow \eta^0 \rightarrow \pi^0 + (S \rightarrow \chi + \chi) \]
The Process.

More in detail, we will analyse the following processes:

\[p+p \rightarrow \pi^0 \rightarrow \gamma + (V \rightarrow \chi + \chi) \]

\[p+p \rightarrow \eta^0 \rightarrow \pi^0 + (S \rightarrow \chi + \chi) \]

In CRs pions are produced 10 times more often than eta-mesons, but its branching ratio into invisible is \(10 \sim 100\) times more constrained.
The Simulation.

We simulate the collisions with nitrogen in the atmosphere using the CRMC package† and describe the effect of the atmosphere as

$$\frac{d\Phi_p}{dT_p}(T_p, h) \equiv Y(h) \frac{d\Phi_p}{dT_p}(T_p).$$

†by R. Ulrich et al, https://github.com/alisw/crmc
The Simulation.

We simulate the collisions with nitrogen in the atmosphere using the CRMC package† by R. Ulrich et al, https://github.com/alisw/crmc

\[
\frac{d\Phi_p(T_p, h)}{dT_p} \equiv Y(h) \cdot \frac{d\Phi_p(T_p)}{dT_p}.
\]
The Flux.

We can obtain the dark matter flux as measured by a detector on Earth (at depth z_d) as

$$\frac{d\Phi_\chi}{dT_\chi} = \frac{d\Phi_p}{dT_p} n_0^0 H_{\text{eff}} \sigma_{pN \rightarrow M} B R_{M \rightarrow \chi\chi}$$
The Flux.

We can obtain the dark matter flux as measured by a detector on Earth (at depth z_d) as

$$\frac{d\Phi_\chi}{dT_\chi} = \frac{d\Phi_p}{dT_p} n^0_N H_{\text{eff}} \sigma_{pN \rightarrow M} B R_{M \rightarrow \chi\chi}$$

with

$$n^0_N \equiv 5 \times 10^{19} \text{ cm}^{-3},$$

$$H_{\text{eff}} \equiv \int_{R_E}^{R_E+h} R^2 dR \int_0^{2\pi} d\phi \int_{\cos \theta_{\text{max}}}^1 \frac{d(cos\theta)}{2\pi l(R, \theta, z_d)^2} \times y(R-R_E)$$
The Flux.

We can obtain the dark matter flux as measured by a detector on Earth (at depth \(z_d \)) as

\[
\frac{d\Phi_\chi}{dT_\chi} = \frac{d\Phi_p}{dT_p} n_0^0 H_{\text{eff}} \sigma_{pN\rightarrow M} BR_{M\rightarrow \chi\chi}
\]

with

\[
n_0^0 \equiv 5 \times 10^{19} \text{ cm}^{-3},
\]

\[
H_{\text{eff}} \equiv \int_{R_E}^{R_E+h} R^2 dR \int_0^{2\pi} d\phi \int_{\cos \theta_{\text{max}}}^{1} \frac{d(\cos \theta)}{2\pi l(R, \theta, z_d)^2} \times y(R-R_E)
\]
The Flux.

We can obtain the dark matter flux as measured by a detector on Earth (at depth z_d) as

$$ \frac{d\Phi_\chi}{dT_\chi} = \frac{d\Phi_p}{dT_p} n_N^0 H_{\text{eff}} \sigma_{pN \rightarrow M} BR_{M \rightarrow \chi\chi} $$

with

$$ n_N^0 \equiv 5 \times 10^{19} \text{ cm}^{-3}, $$

$$ H_{\text{eff}} \equiv \int_{R_E}^{R_E+h} R^2 dR \int_0^{2\pi} d\phi \int_{\cos \theta_{\text{max}}}^1 \frac{d(cos\theta)}{2\pi l(R, \theta, z_d)^2} \times y(R-R_E). $$
The Earth’s Attenuation.

When the cross section is higher than a certain value, Earth effects start to play an important role.
The Earth’s Attenuation.

When the cross section is higher than a certain value, Earth effects start to play an important role.

\[T_\chi^0 = \frac{2m_\chi T^z_\chi e^{l_E/L}}{2m_\chi + T^z_\chi (1 - e^{l_E/L})} \]

with the mean free path length given by

\[L \equiv \left(\sum_N n_N \sigma_{\chi N} \frac{2m_N m_\chi}{(m_\chi + m_N)^2} \right)^{-1} \]
The Earth’s Attenuation.

When the cross section is higher than a certain value, Earth effects start to play an important role.

\[
T^0_\chi = \frac{2m_\chi T^z_\chi e^{lE/L}}{2m_\chi + T^z_\chi (1 - e^{lE/L})}
\]

with the mean free path length given by

\[
L \equiv \left(\sum_N n_N \sigma_{\chi N} \frac{2m_N m_\chi}{(m_\chi + m_N)^2} \right)^{-1}.
\]
The Rate.

The expected rate coming from the ICRDM contribution at a detector is given by

\[\Gamma_N = N_T \int_{T_1}^{T_2} dT_N \int_{T_{\chi}^{\text{min}}(T_N)}^{\infty} dT_\chi \epsilon(T_N) \frac{d\Phi_\chi}{dT_\chi} \frac{d\sigma_{\chi N}}{dT_N}, \]

where \(N_T \) is the number of target atoms, \(\epsilon \) is the detector nuclear recoil energy efficiency.
The Rate.

The expected rate coming from the ICRDM contribution at a detector is given by

\[
\Gamma_N = N_T \int_{T_1}^{T_2} dT_N \int_{T_N^\min}^{\infty} dT \chi \epsilon(T_N) \frac{d\Phi_\chi}{dT_\chi} \frac{d\sigma_{\chi N}}{dT_N},
\]

where \(N_T\) is the number of target atoms, \(\epsilon\) is the detector nuclear recoil energy efficiency.

Taken from [Phys. Rev. Lett. 121, 111302 (2018)]
(Current) Experiment: XENON1T

Characteristics
- $T = 278.8$ live days.
- $M = 1300 \pm 10$ kg fiducial mass.
- $E = [4.9, 40.9]$ keV$_{nr}$.
- $N(90\% \text{ C.L.}) = 3.56$

Data from [Phys. Rev. Lett. 121, 111302 (2018)]
Characteristics

- $T = 1000$ live days.
- $M = 5600$ kg fiducial mass.
- $E = [4.9, 40.9]$ keV$_{nr}$.
- $N(90\% \text{ C.L.}) = 3.56$.

Data from [arXiv:1802.06039 [astro-ph.IM]]
The Limits.

\[\sigma_X [\text{cm}^2] \]

- \(m_\chi = 1 \text{ MeV} \)
- \(m_{\text{med}} = 10 \text{ MeV} \)

- Elastic CRDM
- Inelastic CRDM (\(\eta \))
- Inelastic CRDM (\(\pi \))

\[\text{BR}(M \rightarrow M'\chi\chi) \]

Motivation The Idea The Results Conclusions
The Limits.
A Particular Model.

If we consider a hadrophilic scalar mediator model\(^\ddagger\)

\[\mathcal{L} \supset -g_{\chi} S \bar{\chi} L \chi_R - g_u S \bar{u}_L u_R + \text{h.c.}, \]

we end up with four free parameters: \(m_{\chi}, m_S, g_{\chi}\) and \(g_u\).

\(^\ddagger\)Batell et al, arXiv:1812.05103
A Particular Model.

If we consider a hadrophilic scalar mediator model‡

\[\mathcal{L} \supset -g_\chi S\bar{\chi}_L\chi_R - g_u S\bar{u}_L u_R + \text{h.c.}, \]

we end up with four free parameters: \(m_\chi, m_S, g_\chi \) and \(g_u \).

‡Batell et al, arXiv:1812.05103
Conclusions.

- The possibility of extending the sensitivity of direct detection experiments to low dark matter masses using a cosmic beam dump-like effect has been explored.
Conclusions.

- The possibility of extending the sensitivity of direct detection experiments to low dark matter masses using a *cosmic beam dump*-like effect has been explored.
- A particular model has been presented, in which XENON1T presents competitive limits, comparable to those coming from dedicated experiments like MiniBooNE.
Conclusions.

- The possibility of extending the sensitivity of direct detection experiments to low dark matter masses using a cosmic beam dump-like effect has been explored.
- A particular model has been presented, in which XENON1T presents competitive limits, comparable to those coming from dedicated experiments like MiniBooNE.
- In the future we intend to explore other hidden sectors, independently of dark matter, using similar methods.
Thank you!
Backup Slides: Other Limits

![Graph showing limits on spin-independent WIMP-nucleon cross-section](image)

Extracted from [Phys. Rev. D97, 103530 (2018)]
Backup Slides: Other Limits

![Graph showing limits with m_x (GeV) on the x-axis and \(\sigma_{nx} \) (cm\(^2\)) on the y-axis. Key features include XQC, SAPPHIRE, gas cloud cooling, and CMB scattering.]

Extracted from [Phys. Rev. Lett. 121, 131101 (2018)]
Backup Slides: Other Limits

![Graph showing constraints on dark matter mass and cross section.](image)

The ISM vs The Atmosphere.

In this talk: cosmic rays colliding inelastically with a target, producing mesons that might decay into boosted dark matter particles. The source for the target can be the Interstellar Medium or the Atmosphere.

<table>
<thead>
<tr>
<th></th>
<th>Typical Density</th>
<th>Typical Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISM</td>
<td>10^0 cm$^{-3}$</td>
<td>$\mathcal{O}(10)$ kpc</td>
</tr>
<tr>
<td>Earth’s Atm</td>
<td>10^{19} cm$^{-3}$</td>
<td>$\mathcal{O}(10)$ km</td>
</tr>
</tbody>
</table>