Stability of de Sitter spacetime against the backreaction of the infrared modes of scalar fields

Gabriel Moreau, Julien Serreau

APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.

Based on:
Table of Contents

Motivations

Non Perturbative Renormalization Group

Flow in the infrared limit

Conclusion
Quantum field theory in de Sitter spacetime

We do a semi-classical treatment with

- a classical background metric
- quantum fields as a content

It is maximally symmetric

We will consider the Expanding Poincaré patch → FLRW with constant Hubble rate H

- $\text{d}s^2 = -\text{d}t^2 + a^2(t)\text{d}\vec{X}^2$, $a(t) = e^{Ht}$
- Conformal time, $\text{d}\eta = \frac{\text{d}t}{a(t)}$

 $\text{d}s^2 = a^2(\eta)\left(-\text{d}\eta^2 + \text{d}\vec{X}^2\right)$.
Gravitational effects in de Sitter: particle creation

Similar effects when one puts a quantum field with a constant background field:

- Schwinger effect: pair creation in the presence of an electric field \vec{E}
- Unruh-Hawking radiation: pair creation in the presence of a black hole

In both cases: the creation of pairs has potentially nontrivial backreaction on the background source.
Free scalar field

The mode function of light scalar fields $m \ll H$ in Bunch-Davies vacuum is $\phi_k(\eta) \sim H_{3/2} \left(\frac{k}{a(\eta)} \right)$.

Motivations

Stability of de Sitter spacetime against the backreaction of the infrared modes of scalar fields

$|H_{3/2}(z)|^2$ vs z

amplified fluctuating modes
For scalar field in dS,
- Large gravitational effects in the infrared (superhorizon scales)
- Infrared modes are amplified
- Interactions cannot be treated perturbatively

A. A. Starobinsky, J. Yokoyama ’94 ; N. C. Tsamis, R. P. Woodard ’05 ; C. P. Burgess et al. ’10

It is interesting to study the **backreaction** of these infrared modes fluctuations to test whether de Sitter space is stable under their amplification and interactions.

E. Mottola ’85 ; I. Antoniadis et al. ’86 ; R. H. Brandenberger et al. ’96 ; Unruh ’98 ; A. M. Polyakov ’10, ’12
Table of Contents

Motivations

Non Perturbative Renormalization Group

Flow in the infrared limit

Conclusion
Formulation of NPRG is done in term of the effective action

\[e^{-i \mathcal{W}_\kappa[j, g]} = \int \mathcal{D} \phi e^{iS[\phi, g] + i \Delta S_\kappa[\phi, g] + i \int j \phi} \]

\(g_{\mu\nu} \) background metric, \(S \) action of an \(O(N) \) scalar theory.

\[\Gamma_\kappa[\phi, g] + \Delta S_\kappa[\phi, g] = -\mathcal{W}_\kappa[j, g] + j \cdot \phi, \quad \phi = \langle \hat{\phi} \rangle \]

\[R_\kappa(p) \]

\(\kappa^2 \)

\[\Gamma_{\kappa \to \infty} = S \]

\[\Gamma_{\kappa \to 0} = \Gamma \]
We want to solve the flow of Γ_κ: it obeys the Wetterich equation, which is IR and UV finite

$$\dot{\Gamma}_\kappa = \frac{1}{2} \text{tr} \dot{R}_\kappa (\Gamma^{(2)}_\kappa + R_\kappa)^{-1}.$$

C. Wetterich ’93

The physical values for g and φ are simultaneously determined at each scale κ through

$$\frac{\delta \Gamma_\kappa}{\delta \varphi} = 0, \quad \frac{\delta \Gamma_\kappa}{\delta g_{\mu \nu}} = 0 \quad \text{or} \quad G^\kappa_{\mu \nu} = \langle T^\kappa_{\mu \nu} \rangle$$

We take constant values of φ and de Sitter spacetime: it gives the flow of the Hubble constant
Table of Contents

Motivations

Non Perturbative Renormalization Group

Flow in the infrared limit

Conclusion
The theory flows towards a zero dimensional theory
J. Serreau ’14 ; M. Guilleux, J.Serreau ’15

\[e^{H^{-4} \Omega} \mathcal{W}_\kappa(j,h) = \int d^N \phi e^{-H^{-4} \Omega \left(U_{\text{in}}(\phi,h) + \frac{\kappa^2}{2} \phi^2 - j \cdot \phi \right)} \]

- It coincides with the equilibrium probability distribution in the stochastic formalism
 A. A. Starobinsky, J. Yokoyama ’94
- It is the **effective theory for the scalar field averaged over a Hubble patch** at constant values of the field

With \(U_{\text{in}}(\phi,h) = \alpha - \frac{B}{2} H^2 + \frac{\lambda}{8} \phi^4 \), \(\alpha \propto \Lambda \), \(\beta H^2 \propto R \)

\[H^2_k = \frac{4 \alpha}{\beta} + \frac{2 \kappa^2}{\beta} \langle \phi^2 \rangle + \frac{\lambda}{2 \beta} \langle \phi^4 \rangle \]
Result for a massless self-interacting field

- Enhanced superhorizon modes draw energy from the gravitational field
- The dynamical generation of a mass screens this effect
- Finite renormalization of H^2: $H^2_\infty \approx H^2_{cl} + \frac{2H^4_{cl}}{\beta \Omega}$, $H^2_0 \approx H^2_{cl} + \frac{H^4_{cl}}{\beta \Omega}$

Flow in the infrared limit
Stability of de Sitter spacetime against the backreaction of the infrared modes of scalar fields
Perturbation theory

Expansion parameter is $\frac{\lambda H^4}{\kappa^4}$: perturbation theory breaks down when κ decreases.

\[H_{\kappa}^2 \]

Flow in the infrared limit

Stability of de Sitter spacetime against the backreaction of the infrared modes of scalar fields
Table of Contents

Motivations

Non Perturbative Renormalization Group

Flow in the infrared limit

Conclusion
Conclusion

• The gravitational mass generation screens the renormalization of the Hubble parameter
• Non minimal coupling between the scalar fields and gravitational field has a non trivial effect on the flow
• Goldstone modes do not contribute
• A full non perturbative treatment is needed as the perturbative approach breaks down

Perspectives :

• Generalize to FLRW metric
• apply the same treatment directly to the effective stochastic theory, using QFT formulation of Langevin equation