KU LEUVEN

Medicis-Promed Workshop:

CARBON-11 FOR ION BEAM THERAPY

16 - 18 January 2019 Wiener Neustadt, Austria

http://medicis-promed.web.cern.ch

Organizing Committee: Thierry Stora (CERN), Claus Schmitzer (MedAustron), Andrea Mairani (CNAO), Liviu Penescu (Abstract Landscapes), Cristina Ferrari (CERN), Nicole Rauchlechner (MedAustron)

MedAustron 🎴 Promed

fondazione CNAC

Project from the European Union's Horizon 2020 research and Innovation programme under grant agreement No. 64288.

TDR-Chapter 2: Post-accelerated ¹¹C-Past results

Simon Stegemann

MEDICIS-Promed Workshop on CARBON-11 FOR ION BEAM THERAPY 16/01/2019, Wiener Neustadt, Austria

Outline

- Lawrence Berkeley National Laboratory
- Centre de Recherche du Cyclotron
- GANIL
- CERN ISOLDE
- ISAC/TRIUMF
- HIMAC/NIRS

Lawrence Berkeley National Laboratory

Berkeley Hills, California, USA

(Bevalac, BEARS project)

Bevalac (1974 - 1993)

SuperHILAC+BevatronLinac (8.5 MeV/u)p-synchrotron (6.2 GeV)

- Heavy ion beam production for research and radiation therapy
- 1977-1992: 433 patients treated (mostly 670 MeV/u Ne-beam)

Projectile fragmentation

Machine Parameters	
Primary beam	¹² C, (¹⁸ O, Ne ¹⁰⁺)
Targets	7.8 cm Be, (2.5 cm Be, polystyrene)
Energy	350 MeV/u
Intensity	1.10 ¹⁰ ions per pulse
Magnet Resolving	1/500
power	
Results	
¹¹ C Energy	~250 MeV/u
Angular spread	+/- 10 mrad (12 mrad)
Momentum spread	+/- 1 % (2 %)
Intensity	2 ·10 ⁷ ions per pulse

BEARS project (1998)

11 MeV PET-cyclotron (Biomedical Isotope facility)

+

88" cyclotron (Nuclear Science Division)

350 m transfer line

N₂ gas targets; cryogenic separation; ECR ion source

Machine Parameters	
Primary beam	Protons
Targets	N_2 gas target (13 ml, 22 atm, 0.2 % O_2)
Energy	10 MeV
Intensity	~30 µA
Irradiation time	5 min
Molecular sideband	¹¹ CO ₂
lon source	AECR-u (14+10 GHz): 3+:4 %, 4+:11 %, 5+:4 %, 6+:2 %
Results	
¹¹ C Energy	120 MeV/u
Charge state	6+
Intensity	1 ·10 ⁸ ions/s

- Fully automatized control system handling target loading, irradiation, unloading
- Cryogenic trap crucial feature for ECR ion source performance!

Centre de Recherche du Cyclotron (CRC) Louvain-la-Neuve, Belgium

CRC – RIB facility (1989-2009)

1st post-accelerated RIB from ISOL-type production system

Production: CYCLONE30; Post-acceleration: CYCLONE110 & CYCLONE40

Isotope Separation On-Line (ISOL)

Machine Parameters	
Primary beam	Protons
Targets	BN and B_2O_3 powders
Energy	30 MeV
Release efficiency	10 % at 1000 °C (BN)
Molecular sideband	¹¹ CO _x
lon source	ECR: ${}^{12}C^+$: 15 % (10 ⁻⁵ mbar in-source pressure; CO ₂ - leak; He-carrier gas)
Results	
¹¹ C Energy	Max. 10 MeV
Charge state	1+
Intensity	1 ·10 ⁷ ions/s (BN target; 0.1 cm ³ /h O ₂ -leak)

CERN ISOLDE

Geneva, Switzerland

1.4 GeV protons, max. 2 μ A Two target stations:

GPS: 1 bending magnet HRS: 2 bending magnets (> 5000 resolving power)

lon sources:

Surface ion sources Plasma ion sources Laser ion sources

Target	Yield [1/µC]	lon source	Molecular sideband
HfO ₂	4.4·10 ⁴	Plasma-Helicon	
TiO _x	6.2·10 ⁶	Plasma-Cold-MK7	¹¹ C ¹⁶ O+
NaF:LiF salt	7.7·10 ⁸	Plasma-Cold-VD7	¹¹ C ¹⁶ O ⁺
MgO	2.1·10 ⁵	Plasma-Cold-MK7	¹¹ C ¹⁶ O+
CeO _x fibers	4.8·10 ⁶	Plasma-Cols-MK7	¹¹ C ¹⁶ O ⁺
CaO nanostructured powder	2.7·10 ⁶	Plasma-Helicon	¹¹ C ¹⁶ O ⁺

- Adsorption enthalpies of SiO₂ and Al₂O₃ as coating materials (wrt retention times)
- Diffusion faster in fiber pellets than in powder pellets
- Limitations on extraction & transport:

shortage of O_2 supply

losses on hot Ta surfaces (> 1000 °C)

KU LEUVEN

retention on Mo (in ion source)

SPIRAL1/GANIL

Caen, France

No ¹¹C beams produced at SPIRAL1

Studies on CO, CO_2 ionization and charge breeding efficiencies

Developed with PANTECHNIK 2.45 GHz ECR ion source for 1⁺ ionization (MONO1000)

Off-line study with compact version at ISOLDE: 14 % CO⁺

ISAC/TRIUMF

Vancouver, Canada

Main accelerator:

Sector-focused H⁻ cyclotron

4 independent extraction lines

Beam current: 100 µA (ISAC)

Energy: 500 MeV (ISAC)

Two magnet separator

1 Target station with 3 ion sources: surface, laser, plasma (FEBIAD)

¹¹C beam production

NiO/Ni target at 1100 °C, 500 MeV 16 µA protons: max. yield 10⁷ ¹¹CO [1/s]

HIMAC/NIRS

Chiba, Japan

Heavy Ion Medical Accelerator (RFQ Linac, Alvarex type Drift-Tube Linac, synchrotron rings)

Accelerate heavy ions from protons to Xe up to 800 MeV/u

KU LEUVEN

>10000 patients treated with ^{12}C

Since 2010 SC rotating-gantry

Projectile fragmentation

Machine Parameters	
Primary beam	¹² C
Target	Be
Energy	430 MeV/u
Intensity	1.8·10 ⁹ pps
Separator	3 quadrupole magnets
Results	
¹¹ C Energy	355 MeV/u
Purity	93 % (contaminations of ¹² C, and ⁷ Be)
Momentum spread	3.5 % (FWHM)
Intensity	7.22 ·10 ⁶ pps (in spot scanning mode)

N₂ gas targets; gas separation

Machine Parameters	
Primary beam	Protons
Targets	N_2 gas target (100 ml, 15 bar, 2% O_2)
Energy	18 MeV
Intensity	~20 µA
Irradiation time	20 min
Molecular sideband	¹¹ CO ₂
lon source	ECR : 4+: 1%
Results	Theoretical estimation
Charge state	6+
Intensity	~1 ·10 ⁸ ions per pulse
Impurities	$N_2 \sim 10^{22}$ for 100 ml target

KU LEUVEN

Isotope Separation On-Line (ISOL); cryogenic separation

Isotope Separation On-Line (ISOL); cryogenic separation

Parameters	
Primary beam	Protons
Targets	NaBH ₄ , B ₂ O ₃ , B
Energy	18 MeV
Intensity	~30 µA
Irradiation time	20 min
Released fraction	29.3 %, 76 % (but as CO ₂), 0.2 %
Molecular sideband	¹¹ CH ₄
Yield	~10 ¹³ ¹¹ CH ₄ (NaBH ₄₎
Collection/extraction eff.	60-80 %
lon source	1 ⁺ ion source; ESIS charge breeder: Requirement: 1% total efficiency

Thank you. Questions, comments?

This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission's Horizon 2020 Programme under contract number 642889 MEDICIS-PROMED.

25

Backup

