RI beam projects in NIRS

Hideyuki Mizuno

Dept. of Radiation Measurement and Dose Assessment National institute of Radiological Sciences, QST

- Secondary beam project
 - Projectile fragmentation
 - Spot scanning irradiation
 - Positron camera for range verification
- ISOL research
 - RI generation
 - RI beam acceleration
- Detector development
 - Open PET

- 1995 ~ 1997 Secondary beam line construction
- 1998 \sim 1999 Irradiation room preparation
- 2000 \sim 2002 Beam test using positron camera
- 2002 \sim 2003 Washout measurements of RI in the rabbit

- Radioactive nuclear beam (RNB) course
 - Projectile fragmentation of relativistic high energy beam is used to produce various radioactive nuclei.
 - Secondary beam is directly used for the irradiation of cancer treatment.
- Beam irradiation system
 - In order to obtain a desired 3D shape, the spot scanning method is utilized.
- Detectors for the measurement of radioactive nuclei
 - Commercial PET system is available for the ¹¹C beam.
 - Positron camera is developed in order to obtain the 1D range information.

Secondary beam course

NIRS

2.0m

Momentum dispersion at F1

Production of ¹¹C Beam

Typical parameters		$^{11}\mathrm{C}$
Energy of primary ¹² C	430MeV/n	
Thickness of Be target	51mm	
Thickness of AI degrader	none	40
Rigidity window	2.0% (FW)	
Angular window H.&V.	26mrad (FW)	
Results		
Energy of secondary ¹¹ C	355MeV∕n	X 1.59200 2.23200 Y 0.60000 7.00000
Range in water	21cm	
Production rate	0.4%	
Purity	93%	4
Momentum spread	3.5% (FWHM)	O measurement (spot)
Beam size at F2	4mm (FWHM)	
Beam size at patient	9mm (FWHM)	

50

100 150 Z [mmWEL]

200

250

3D irradiation system

Patient positioning system and chair

Pattern Test

63x63 mm, 20 mm apart, 3 mm step

- Positron Emission Tomography (PET)
 - For the check of the irradiation volume after the treatment,
 - a 3D image can be observed by a commercial PET system.
 - ¹¹C beam is used for the treatment instead of ¹²C beam.
- Positron Camera
 - In order to determine a precise beam range,
 - a pilot pencil beam and positron camera are used.
 - A pilot pencil ¹¹C beam with a few dose is necessary.
 - By using more short-lived ${}^{10}C$ (half life is 19s) beam, the range can be measured on line without any biological effects.

Measurement by commercial PET

NIRS

Comparison of ¹¹C Beam (RI) and Autoactivation (AA)

Irradiation Dose: 1 Gy, Irradiation Field: 35x35x50 mm WE

SQST Feasibility measurements using positron camera

GOST Washout measurements of RI in the rabbit

To study the washout effect, rabbit was irradiated by C-10 and C-11 beams.

Brain and thigh muscle were selected as targets.

One- and Two-dimensional position distribution of brain irradiation. (Beam comes from right side.)

Washout effect was clearly seen for C-11 irradiation to live brain.

Washout measurements of RI in the rabbit (cont.)

3 components were exist for the wash out effect.

To apply these techniques to real clinical situation,

- washout effect should be studied more in detail.
- the intensity of RI beam (¹⁰C and ¹¹C) should be increased.

Purpose: development of an ISOL system

¹¹C ions ~10¹⁰, $\Delta T \sim 100 \, \mu s$

ISOL system for ¹¹C ion production

NIRS

HIMAC

- $\stackrel{\circ}{=}$ providing **one pulse every 20 min**; production and accumulation of ¹¹C molecules with a commercially available cyclotron (~20 μ A).
- $\stackrel{\scriptstyle \bullet}{}$ pulse compression required of the injection into synchrotron; 20 min \rightarrow 100 μs
- EBIS (Electron-Beam Ion Source)-charge breeder enables highly efficient use of ¹¹C by trapping ions. cf. cw-ECRIS

Each module that has been developed so far has good performances: target, separator and SCIS

NIRS

HIMAC

OpenPET : PET-guided particle therapy

"OpenPET" our idea for 3D in-beam PET

SROP type OPEN PET

GQST

Spill off + beam off OSEM 1.5 mm³ voxel

Akram Mohammadi, et al., NIMA 2017 p76

- By secondary beam project, the beam course was developed and studies on biological washout effects were performed.
- To overcome the low intensity RI beam, ISOL research is ongoing.
- OpenPET was developed for efficient use of the limited signal from RI.

Thank you for your attention