

PET Imaging for Treatment Verification

Clinical Status

Julia Bauer (PhD)

Heidelberg Ion Beam Therapy Center (HIT) and Department of Radiation Oncology, University Hospital Heidelberg

2nd Heidelberg Symposium on Novel Techniques in Ion Beam Radiotherapy March 11th, 2016

Outline

Introduction PET-based in-vivo verification Different concepts

HI7

Technical realization and clinical results for:

In-Beam Installations (¹²C, (p))

In-Room Installation (p)

Offline Installations (12C, p)

Lessons learned

Outlook

In-vivo verification of PT HIT Various sources of range uncertainties: (See also Paganetti et al, PMB 57 (2012)) **Planning:** Treatment: **Imaging artifacts** Anatomic changes HU-water conversion Positioning of the patient Range uncertainty Inter-/intra-fractional motion **Biology models** (liver, prostate ...) Lomax' bermuda triangle: Range uncertainty ranked 2nd! **In-vivo verification** projectile fragment **Primaries Secondaries** projectile evap. PET Heavy-Ion CT p.d.t fireball Interaction vtx imaging αn *\gamma***-emission** target target fragment Prompt gamma (...) Abrasion Ablation

PET-based treatment verification

H17

PET-based treatment verification

H17

Different Implementations

In-beam (PET)

- + patient in treatment position
- limited detection area (dual head camera)
- very high integration costs (prototypes)
- high background signal

Offline (PET/CT)

- + full ring scanner
- + CT: co-registration PET↔ anatomy

H T

- + comparably low costs (com. product)
- time delay between irradiation and PET scan → washout, low signal (¹¹C)
- re-positioning of patient
- very long acquisition time

In-room (PET or PET/CT)

- + patient in treatment position
- + full ring scanner, state-of-the-art imaging
- (+ CT: co-registration PET ↔ anatomy)
- limited to cranial indications (NeuroPET)
- required radiation hardness

Overview Clinical Experience

In beam: GSI (Germany): ¹²C NCC (Japan): p

HIT

Parodi

Courtesy of K.

In Beam: GSI_{12C} (1997-2008, >400pts)

H17

Crystal

identification Timine

Detector hea

Amplifier Discriminators

12C beam

BGØ block detect

- Double head camera @ horizontal beam port (components: ECAT EXACT PET system, BGO)
- Detector head area: 42 x 21 cm²
- Workflow:

In Beam: GSI_{12C} (1997-2008, >400pts)

- Validation of physical beam model for TP (CT calibration curve)
- Indirect estimation of dose deviation from in-beam PET:

In Beam: GSI_{12C} (1997-2008, >400pts)

H-III T

Quantitative study on accuracy of in-beam PET to detect range deviations:

- 6 experienced observes
- 81 patients (head & neck)
- Range modification of up to ± 6mm in water simulated

 \rightarrow appropriate tool for monitoring heavy ion therapy

In Room – NCC_p

- Planar detector heads, BGO crystals
- FOV size: 16.48 x 16.7 cm²
- Detector distance adjustable (30 100 cm)
- Daily measurement
- t_{frame}: 200s (starting immediately after irradiation)

H17

- Confirmation of reproducibility
- Changes of activity distribution observed:
 - tumor volume changes
 - patient positioning/body shape variations

In Room – NCC_p

H17

et al, IJROBP 76 (2010)

Nishio T

100

50

- Clinical analysis of 48 patients (1 brain, 18 head & neck, 4 liver, 15 lung, 10 prostate)
- Example head & neck: Depth activity profile at different treatment days:

-50

Depth [mm]

In Room – MGH_p

- NeuroPET scanner on wheels
- Scan start ~2 min after irradiation
- Image co-reg. via markers (~ 2 mm uncert.)
- 9 patients
- t_{frame} up to 20 min

HIT

- Comparable results for 5/20 min scan time for range deviation
- > Week points of MC modelling:
 - Elemental composition of tissue
 - Washout modelling
- Main issue: image co-registration
 in-room PET/CT

Offline - MGH_p

- Remote PET/CT scanner (PET scan delay 13-20 min)
- Refixation with same devices as used for treatment
- Data acquisition: 30 min
- \rightarrow consider biological washout in MC prediction

Average range deviation: -0.1 (\pm 2) mm \rightarrow only in low perfused, well co-registered bony structures (head/neck)

Offline - MGH_p

Feasibility and accuracy of offline PET/CT based verification:

- Spatial reproducibility of PET vs PET within 1mm (however restricted to particular tumor sites)
- Beam stop in soft tissue: washout uncertainty PET-MCPET: ~4mm
- Motion: spatial deviations **up to 3cm** between PET and MCPET
- Reliability of comparison method (MC):
 - Motion and biological washout difficult to be taken into account in MC
 - Translation HU values \rightarrow tissue composition critical (p irrad.)

HIT

Offline – HIT_{p,12C} (2010-now, >200 pts)

Offline – HIT_{12C} (2010-now, >200 pts)

Initial experience with monitoring of ¹²C patients:

Extremely low signal strength (~100 Bq/ml)

H17

- Pronounced signal max at distal edge
- Very good range control for ¹²C in both analysis strategies (MCPET-PET, PET-PET)

Offline – HIT_{p,12C} (2010-now, >200 pts)

- Systematic analysis for cranial lesions: 10 x p/12C each; 1-2 field plans
- PET after 2 selected therapy fractions
- Range analysis (RA): MCPET_{1,2}-PET_{1,2} and PET₁-PET₂

H17

Offline – HIT_{p,12C} (2010-now, >200 pts)

First clinical study for 4D PET/CT verification of moving targets:

- 3 patients (HCC), ¹²C treatment, single field plans (right-lateral), 4 fractions
- Motion amplitude (MA) of lesion in SI: ~ (2-14) mm
- Recording of respiration signal during TP, irradiation and PET scan
 → 4D sim: considering time structure of beam delivery (interplay effects)
 → 4D meas: time-resolved PET image reconstruction

- No benefit of 4D analysis for lesions with MA-SI < 5 mm</p>
- Improved data evaluation by 4D for lesions with MA-SI ~ 10 mm
- Low signal level \rightarrow considerable noise contribution hampers data analysis

Lessons learned

H17

→ Various pre-clinical and clinical studies performed for all imaging configurations

InBeam (12C):

- Only prototype installations \rightarrow no commercial solution available
- \bullet Only double-head configurations \rightarrow recon and quantification issues

InRoom (p):

- Standalone full-ring scanner (preferably PET/CT): radiation hardness
- Biological washout has to be considered for MCPET-PET strategy

Offline (p, ¹²C):

- Good range information for ¹²C (pronounced max at distal edge)
- Higher signal for p (~ 2-3 times higher), but shallow distal fall-off
- Limited accuracy of PET prediction model (washout/tissue composition) hinders reliable range verification for various clinical scenarios
- Limited to single /parallel field(s) (\rightarrow robust treatment?)
- CT acquisition might rule out PET verification

Lessons learned

HIT

"Quo vadis" PET verification?

H17

Tashima

đ

Courtesy

\rightarrow *in-beam!*

Detector Development:

- Double head cameras: fast TOF-PET systems
- "Gantry compatible" closed-ring configurations:

Tashima et al, PMB 57, 2012

- \rightarrow advanced pre-clinical studies ongoing
- Combination of in-beam PET with other particle tracking systems (INSIDE project @ CNAO (next talk): in-beam PET + charges secondaries + PG)

Clinical routine application at many centers: manufacturer for gantry built-in system mandatory

Routine Veri for Adaptive Therapy?

... requires a fast and reliable feedback!

4/7

About Reliability:

- In-beam (Helmbrecht S, PMB 57 (2012)): Automated range analysis for GSI data*: promising results for range shifts > 5 mm (soft tissue); however worse than human observer performance
- Offline:

Automated range verification (Frey K, PMB 59 (2014), offline and in-room); Larger uncertainties on MCPET modeling \rightarrow establish decision support system to evaluate reliablity of observed range differences

(Chen W, Bauer J et al, MMND-ITRO 2016)

Routine Veri for Adaptive Therapy?

About speed:

- GPU based MC for dose calculation \rightarrow PET?
- Analytical approach to calculate expected positron emitter distribution from planned dose distribution (*)
 - → Gaussian based filter functions: translate DDDs to PEDDs
 - → first implementation to RayStation (*submitted to ICCR 2016*)

H17

*Parodi PMB 51 (2006), Attanasi PMB 56 (2011)

Concluding Remarks

- Heidsberg Ionenstraf-Finerapie Centrum
- Clinically implemented routine in-vivo verification of particle therapy (PT) at operating facilities remains an unsolved challenge
- However deemed to be necessary for a full exploitation of PT's advantages compared to conventional RT
- Ongoing research effort in detector and system integration development, not only for PET:

➤ Will be covered by the following talks ☺

Acknowledgements

H17

BACKUP

Offline – NCC_p

- PET/CT (Discovery ST (GE Medical Systems)
- Transfer time 5-7 min (~40m distance)
- PET data acquisition: 5 min
- 5 patients: sacrum, prostate, head & neck, 2x liver
 → lateral field position

 \rightarrow estimate signal strength for in-beam system

Activity Distribution

Main drawbacks:

- No direct information on proton range
- Problems to quantify washout effect in different tissue categories

HI7

Technical workflow @ HIT

