

EOS status and strategic directions

2

Elvin Sindrilaru

on behalf of the EOS team

15/05/2019 ALICE T1/T2 Workshop

Outline

• EOS architecture overview

• New namespace and FUSEx

• Central draining

• Recycle-bin structure changes

• QuarkDB configuration and HA setup

• LRU and FSCK refactoring

• Packaging changes and Kubernetes testing

• Plans for the future

3

EOS architecture

4

QuarkDB namespace

5

• QuarkDB in production:
• EOSHOME instance acting as

backend for CERNBOX

• EOSBACKUP holding > 1.5 B files

• EOSPPS > 3.5 B files

• All LHC experiment instances

• Designed and implemented
QuarkDB, a highly available
datastore for the namespace:
• Redis protocol, supports a small

subset of Redis commands

• RocksDB as the underlying
storage backend

• High availability: Raft consensus

Latency optimization

• No previous notion of asynchronous

namespace operations in the MGM

6

• Impossible to achieve

reasonable performance

(many kHz) without it

• Optimization through

MGM metadata caching,

prefetching, pipelining,

plus an asynchronous

write queue…

Practical matters for operators
• How to move to the new namespace?

 Use the conversion tool:
 http://eos-docs.web.cern.ch/eos-docs/quickstart/ns_quarkdb.html

• Will the old namespace stay around forever?
 There’s really no use-case which benefits anymore from the old

NS, so it will be deprecated

 Support at least until 2020, depending on how quickly the
migration happens

• Using SSDs for QuarkDB data is necessary for good
performance

• MGM and QuarkDB daemons can be co-located or
running on different nodes

7

http://eos-docs.web.cern.ch/eos-docs/quickstart/ns_quarkdb.html

eos-ns-inspect tool
• Tool used for getting information about namespace entries

• Can be use for:
• dumping an entire hierarchy – for example for backup recovery

operations

• getting specific file information

• For minimal operational impact can display info from:
• QDB snapshots

• QDB slaves

• Handy tool for:
• displaying “offline” info about the state of the namespace

• post-incident inspection for the namespace

• scanning for different error condition or inconsistencies

8

FUSEx (eosxd)

9

• Why eosxd

• Better POSIX-ness

• File locks, byte-range locks

• Hard links within directories

• Rich ACL client support

• Local caching

• Bulk deletion/protection

• Strong security/mount-by-key

• Completely new architecture with aggressive caching and strong

consistency guarantees

• Functional improvements to multi-client cache-invalidation

protocol, mtime consistency, negative kernel cache management

• Enhancement of managing, monitoring and limiting client access

per instance

eosxd – improvements

10

• Evolution of client driven recovery to hide common hardware

unavailability

• Support for containerized application and simplification of strong

authentication

• Performance in general on par with AFS depending on the

workload – AFS implemented as a kernel module!

eosxd – many more improvements …

11

Central draining

12

• Old distributed draining model not scalable for the new

namespace

• Each FST was querying repeatedly the namespace for the list

of files to be drained

• Central draining now steers transfer from

the MGM using XRootD TPC transfers
• Simplify the code on the FST side

• Automatic retries and fallback to other

replicas if first attempt failed

• Handles any type of layout: plain, replica,

RAIN

• Dedicated/configurable pool of threads

doing the draining

• Queue for pending file-systems to be

drained

Central draining configuration

13

• Dynamically configurable drain thread pool

• Other configuration saved as space attributes
• drainer.node.fs – max number of file-system in draining per

node

• drainer.fs.ntx – max number of parallel transfers per file
system

• drainer.retries – max number of retries if failed transfers

• Monitor performance:

eos ns max_drain_threads <num>

Recycle bin structure changes

14

• Existing recycle path convention:

• Drawbacks:

• Flattens the entire recycle history for a user

• Leads to extremely large directories (100k – 1M)

• Considerable scalability issues when using the

QuarkDB namespace

• New recycle path convention

/…/proc/recycle/gid/uid/dir1#:#dir2#:#file1.dat.hex_fid

/…/proc/recycle/uid:<val>/<year>/<month>/<day>/<hash>/path.hex_fid

EOS configuration in QuarkDB

15

• Necessary step in providing high-availability setup

• Move file-based config (default.eoscf) to QDB

• MGM setup requirements (xrd.cf.mgm):

• mgmofs.cfgtype quarkdb

• mgmofs.qdbcluster <qdb1> <qdb2> …

• mgmofs.qdbpassword_file <some/file>

• Configuration export done using:

• Inspect the configuration directly from QuarkDB

eos config export <path_to_config_file>

QuarkDB leases

16

• Building block for providing HA for the MGMs

• Stores information concerning:
• Current owner of the lease

• Validity of the lease

• Operations on leases:
• lease_acquire

• lease_release

• lease_get -> display information about the lease

• Master-slave MGMs synchronize using the lease key
“master_lease”

EOS HA

17

EOS master-slave HA

18

• Rely on the QuarkDB lease to decide who is the master
• Lease is valid for 10 seconds (configurable)

• Master renews the lease every 5 seconds

• During a slave->master transition reload the configuration from
QuarkDB

• Automatically enforce/disable stall rules

• Force a master to abandon the lease

• Master-slave info displayed in the “ns” command
• EOS-MGM-1: ALL Replication is_master=true master_id=eos-mgm-1.cern.ch:1094
• EOS-MGM2-: ALL Replication is_master=false master_id=eos-mgm-1.cern.ch:1094

eos ns master other

LRU and FSCK refactoring

19

• LRU requires scanning through the entire directory hierarchy

• NS intensive operation which can trash the directory cache at the MGM

• Does not require strong consistency  avoid taking the global namespace lock

• Rewritten to take advantage for the QDB interface and not impact normal user activity

• Fully functional since EOS 4.4.35 version

• FSCK is also an NS intensive operation

• State can change considerably between runs
• EOS has 30-300 servers i.e. 1000  15000 disk ok, partially failing or broken

• Some hardware not working is the standard case

• Needs to be redesigned to take advantage of the QDB backend

• No need to trash the MGM cache

• Plan to integrate it with a QoS workflow which will address transient failures

• Final goal  Improve user experience and availability

• MGM behaves rather binary – available or not

• FST (storage server) – can exhibit transient failures
• These can crash the applications and transient behavior can be frustrating for the users

EOS RAIN support

20

• EOS supports by default different types of RAIN layouts:

• RAID Double Parity (4 data +2 parity stripes) – uses XOR

• Reed Solmon (4+2), Archive (6+3) or other combinations

• File layout type is set as an

extended attribute of the

directory containing the files

• Other attributes: checksum,

block checksum, number of

replicas/stripes

• Preferred block checksum type:

CRC32C uses SSE if the HW

supports it

EOSALICEDAQ RAIN conversion

21

• Converted 1.2M files, ~4.8 PB physical size (2-replica)

• RS(10,2), freed 2 PB , took 84 hours

Packaging and Kubernetes testing

22

• Starting with 4.4.44 EOS brings its own dependencies for:
• XRootD

• Libprotobuf3 – considerable improvement for eosxd performance

• These dependencies are stored in /opt/eos/

• EOS server depends on XRootD private headers – need to
ensure compatibility

• EOS executables and libraries have RPATH pointing to the
/opt/eos/ location

• Testing infrastructure
• Docker based

• Kubernetes extension for scalability

EOS testing in

• Build and distribute Docker images for different OSes

• Create your own fully functional EOS instance on your laptop in
a matter of seconds:
• https://gitlab.cern.ch/eos/eos-docker

23

https://gitlab.cern.ch/eos/eos-docker

EOS testing workflow

24

Git repository

.........

.........

Git Docker

Registry

ft38
a4x9

x8cc

Build:

Docker

_img

Build:

rpm
Test Publish Clean

commit

developers

GitLab Runner

EOS testing at scale with Kubernetes

25

Git repository

.........

.........

Git Docker

Registry

ft38
a4x9

x8cc

Build:

Docker

_img

Build:

rpm
Publish Clean

commit

developers

GitLab Runner

Kubernetes Cluster

Test

• Repository with helper scripts and instructions

• https://gitlab.cern.ch/faluchet/eos-on-k8s

https://gitlab.cern.ch/faluchet/eos-on-k8s

Plans for the future

26

• Stop support for the beryl_aquamarine branch: 2019

• Focus on stability and better fault-tolerance

• Drop the MQ daemon and move messaging pub-sub
to QuarkDB

• Improve availability and self-healing mechanisms

• Redesign the FSCK functionality

• No (other) big changes from the current model

