ALICE security research site at University of Frankfurt

9th ALICE Tier-1/Tier-2 Workshop

Andres Gomez Ramirez, Udo Kebschull IRI - Goethe University Frankfurt ALICE UF Grid site

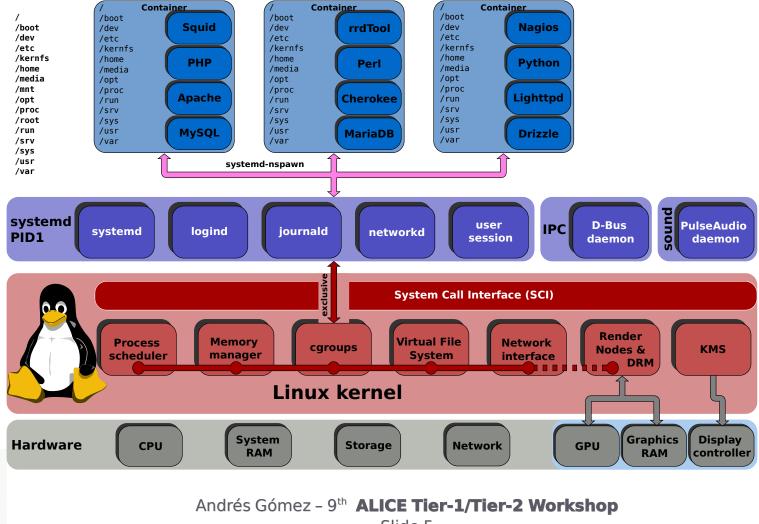
andres.gomez@iri.uni-frankfurt.de

UF Grid Site

- > Security research, not production data processing.
- PhD thesis: "Deep Learning and Isolation Based Security for Intrusion Detection and Prevention in Grid Computing".
- > 5 Ubuntu 16.04 nodes.
- Centos 6 containers.
- CernVM-FS installed in the hosts and shared as a volume inside Docker containers.

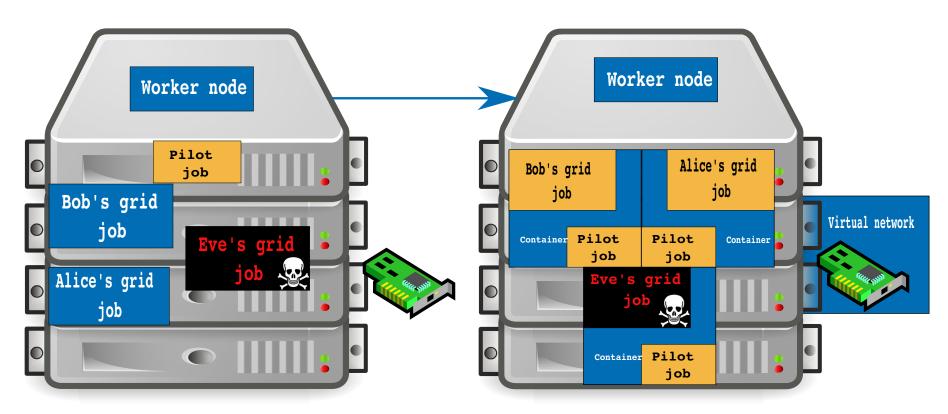
Motivation: Grid Security Challenges

- > Users can execute any application: arbitrary code execution by design.
- > Payloads are frequently executed directly on host Operating System.
- > Network sections are shared.
- > Hundreds of thousands of jobs running simultaneously.
- Expensive to have many security experts monitoring the Grid.
- Similar to Cloud computing.

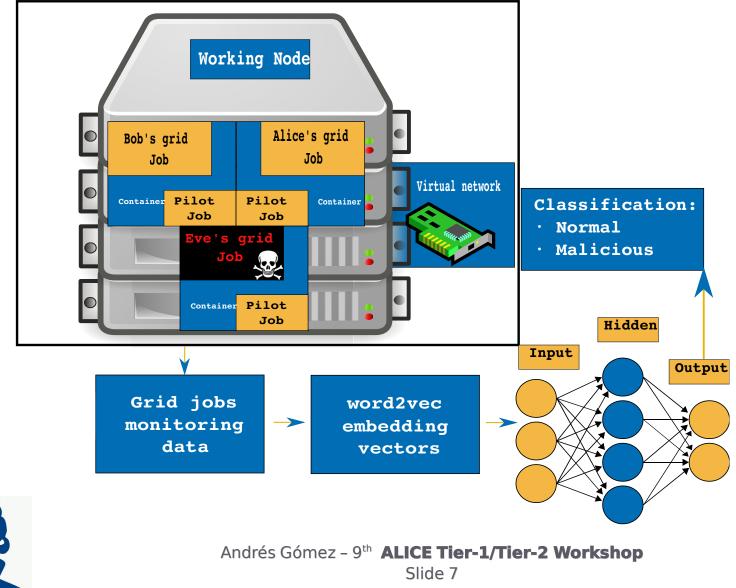


Proposed Solutions

- > Linux Containers to execute payloads.
- > Network isolation with virtual networks.
- Solution to extract better payload behavior data from the host and from the network.
- > Automated Intrusion Detection and Prevention.
- > Deep Learning to enable this automation.

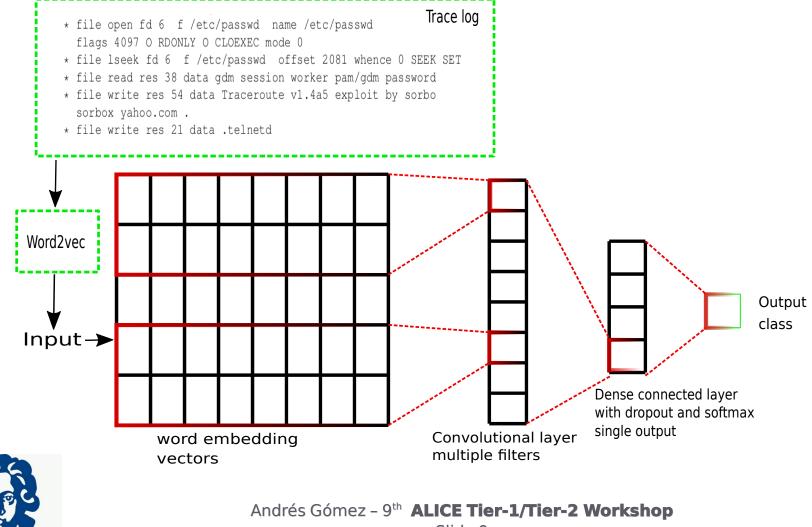


Security by Isolation: Linux Containers


Slide 5

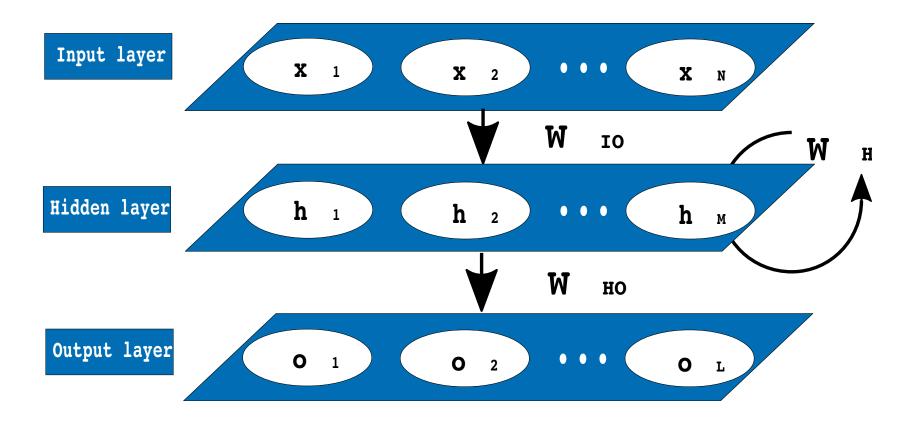
Grid Job Execution and Network Isolation

Behavior Monitoring for the Grid

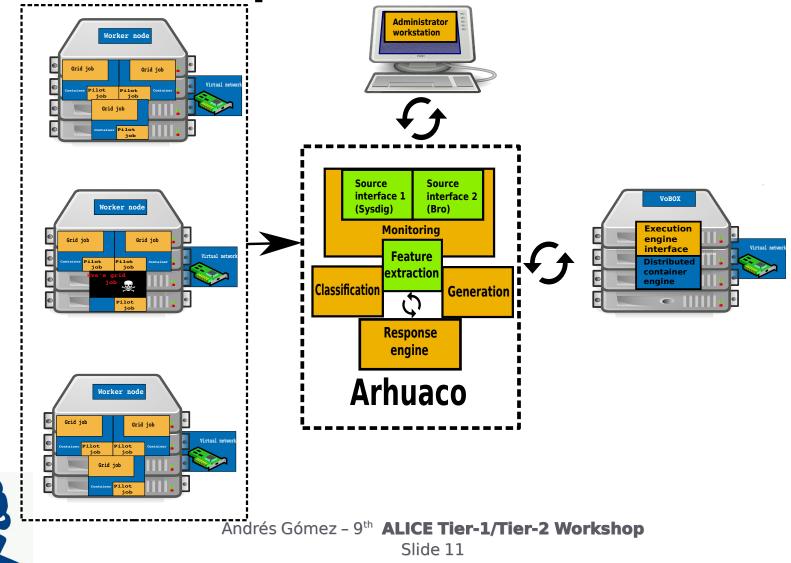


ALICE Grid Security Monitoring

- > Linux Containers
- > Deep Learning
- Convolutional Neural Networks
- > Recurrent Neural Networks
- > Generative method for improving training
- > Grid Jobs normal vs malware



Grid job classification with Convolutional Neural Network


Slide 9

Training data generation with Recurrent Neural Networks

Arhuaco: proof-of-concept implementation

Arhuaco: proof-of-concept Implementation

- > Linux Containers: Docker, Docker Swarm
- Deep Learning: Keras, Theano, TensorFlow, Python 3.
- Data collection: System Calls Sysdig, Network connection - The zeek Network analysis tool.
- > Grid Middelware ALICE AliEn.

Evaluation: Grid Jobs vs Malware

Catalogue browser LEGO Trains 🖈 Administration Section ALICE Reports Alert XML Feed Firefox Toolbar Mor /alice/cern.ch/user/a/aliprod/LHC18c11 Welcome agomezra (~) with role agomezra (~) Permissions Size Owner Timestamp Filename aliprod:aliprod 27 Mar 2018 09:36 1.424 KB -rwxr-xr-x chunks_1k.txt 🕐 -rwxr-xr-x aliprod:aliprod 27 Mar 2018 09:44 635 B GeneratorCustom.C aliprod:aliprod 27 Mar 2018 09:55 1.674 KB -rwxr-xr-x JDL 🕐 -rwxr-xr-x aliprod:aliprod 27 Mar 2018 09:32 1.639 KB JDL ocdb.idl 27 Mar 2018 09:44 aliprod:aliprod 2.5 KB -rwxr-xr-x JPsiPbPbGenerator.C -rwxr-xr-x aliprod:aliprod 27 Mar 2018 09:34 29 KB QAtrainsim.C 😢 -rwxr-xr-x aliprod:aliprod 27 Mar 2018 09:44 467 B rootlogon.C -rwxr-xr-x aliprod:aliprod 27 Mar 2018 09:33 5.835 KB validation.sh 43.15 KB in 8 files Edit new file Upload files in this folder (100MB max, multiple selection possible) Browse. No files selected. Upload... Create subfolder Create new folder

MonALISA Repository for ALICE

Virustotal

SHA256:	5ff86d434be5a4011ddcd63b1dcf1ebb0b72ad9e27bfccf640f38dc117cf330d
File name:	341dcb650048862fe07cb53fba4a76fffe9bcd7e_86.tgz
Detection ratio:	21 / 53
Analysis date:	2014-07-22 17:47:44 UTC (3 years, 9 months ago)

Analysis O Additional information Comments O Votes			
Antivirus	Result	Update	
Ad-Aware	Application.Linux.B	itCoinMiner.A 20140722	
AntiVir	LINUX/Procfake	20140722	
Avast	ELF:BitCoinMiner-0	G [Tool] 20140722	
BitDefender	Application.Linux.B	itCoinMiner.A 20140722	
CAT-QuickHeal	I Linux.RiskTool.BitC	coinMiner.a 20140722	
Comodo	UnclassifiedMalwar	e 20140722	
DrWeb	Linux.CpuMiner.1	20140722	
ESET-NOD32	Linux/BitCoinMiner	D 20140722	
F-Secure	Application.Linux.B	itCoinMiner 20140722	

Evaluation: Grid Jobs vs Malware

Dataset	Normal	Malware
System call	12 GB - 127′100,000 lines	8.2 GB - 127′054,763 lines
Network	868 KB - 20,733 lines	108 KB - 2,937 lines

Table 6.1: The complete set of information describing the analyzed grid jobs and malware behavior, as collected log-lines.

Dataset	Training	Validation	
System calls traces	10′000,000	100,000	
Network traces	20,000	2,000	

Table 6.2: Training and validation samples obtained after the feature extraction method.

Results: Impact of Isolation over performance

Setup	ALICE job average runtime (Seconds)	Standard deviation		
Native	110.77	10.03		
Docker	114.22 (3.12%)	12.58		
Arhuaco	117.54 (6.11%)	11.83		

Table 6.3: Results of the performance overhead related to the runtime of the ALICE-based jobs.

1600 Grid Jobs in total

Results: Grid job classification – normal vs malware

Testing dataset	CNN ACC	SVM ACC	CNN FPR	SVM FPR
System call	0.9952 (3.24%)	0.9639	0.0068 (-90.10%)	0.0687
Network traces	0.9875 (25.46%)	0.7871	0.0006 (-99.84%)	0.3781

Table 6.8: Comparison of the evaluation metrics between CNN vs. SVM for new testing samples extracted from the system calls and network traces.

- CNN: Convolutional Neural Network
- SVM: Support Vector Machine
- > **FPR:** False Positive rate
- > **ACC:** Accuracy

Results: training data generation results

Testing dataset	TPR	SPC	FPR	ACC
Network traces normal	0.9507	0.6219	0.3781	0.7871
Network traces generated	0.9712 (2.16%)	0.6206	0.3839	0.7928 (0.72%)

Table 6.9: Resulting accuracy of the SVM tested with previously unseen data. These results compare the training made with the original network samples vs. the new dataset with generated data.

- > TPR: Sensitivity or True Positive Rate
- > **SPC:** Specificity
- FPR: False Positive rate
- ACC: Accuracy

Andrés Gómez – 9th ALICE Tier-1/Tier-2 Workshop

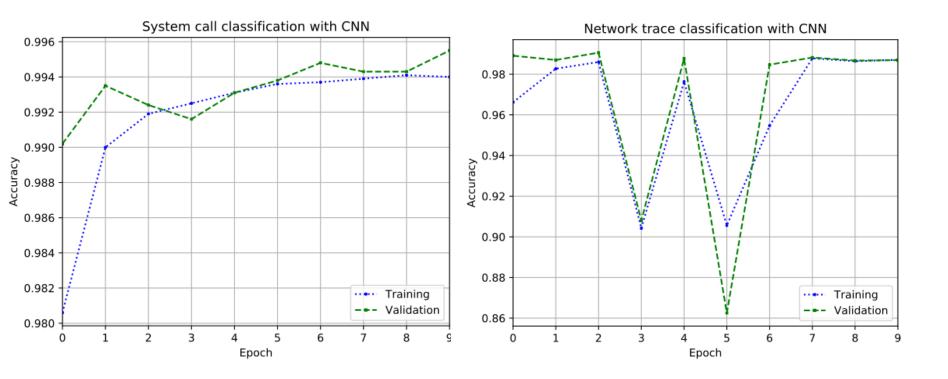
Slide 17

Conclusions

- Docker containers can be used to isolate and extract behavior information from Grid jobs without big performance impact.
- Deep learning is highly effective to identify "malicious" Grid jobs.
- CNNs with Word2Vec preprocessing provides improved accuracy than traditional SVM.
- Synthetic generated data can improve the training process.

Future work

- > Thesis submitted.
- > Exploring options: Arhuaco as open source and/or commercial tool.
- > UF Grid site probably will not continue operations.
- Future research topics of interest: differential privacy, adversarial machine learning training, privacy preserving intrusion detection.



Thank you!

Questions?

Appendix: CNN results

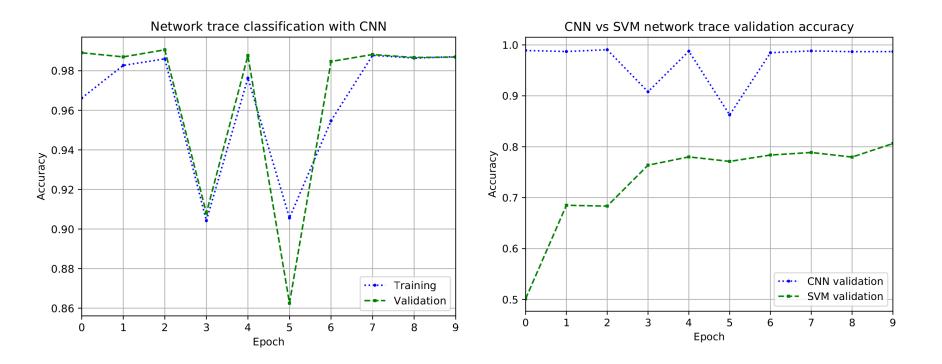
System Calls

Network connections

Andrés Gómez – 9th ALICE Tier-1/Tier-2 Workshop

Slide 21

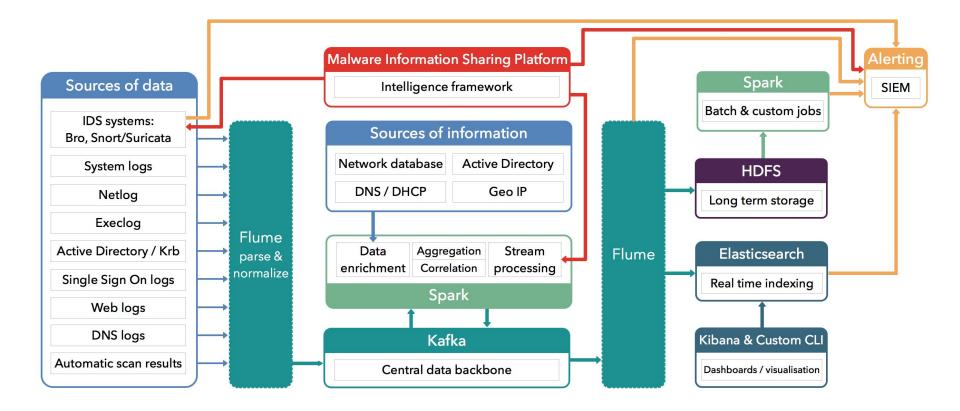
Appendix: System call results



CNN

CNN vs SVM

Appendix: Network traces results



CNN

CNN vs SVM

CERN Security Operations Center

Andrés Gómez – Frankfurt University Slide 24