

Istituto Nazionale di Fisica Nucleare SEZIONE DI LECCE

IDEA Test Beam 2018 Drift chamber

F. Grancagnolo¹, G. Tasselli¹, B. Testa¹

<u>R. Aly</u>², N. De Filippis², A. Taliercio²

¹ INFN Lecce / Università del Salento

² INFN Bari / Università de Bari

RD_FA collaboration 5 Dec. 2018

Noise Identification

- We need to identify the coherent noise between the channels.
- We take two channels in the same layer beside each other "Ch1 & Ch2"
- Build new wave form by subtracting these two wave forms.

$$WF_{new} = WF_1 - (Divide) * WF_2$$

Where:

 $\mathsf{Divide} = \frac{(\textit{sum volt first 100 bins) ch1}}{(\textit{sum volt first 100 bins) ch2}}$

$$\succ$$
 Run 126 \succ Event 6 \succ Ch1 & Ch2

WF 1

WF 2

New WF

Run 126 (event 6)

• Define the pedestal for the new wave form

Noise

$$Average = \frac{(sum \ volt \ first \ 100 \ bins)NewWF}{100}$$

For the first 100 bin:

- Distribution of the deviation of each voltage in the new wave form from the average value
- This measures the white noise for single channel:

$$\sigma=2,3\ mV/\sqrt{2}=1,6\ mV$$

Run 126 (event 6)

- > Smooth the wave forms by averaging the voltage in the neighboring channels of ADC
- Trying different smoothing factor (SF)
- Example: SF = 2 => averaging 5 bins "2bins in left + central bin + 2bins in right" Smooth WF1

Example: SF = 7 => averaging 15 bins "7bins in left + central bin + 7bins in right"

Smooth WF1

Run 126 (event 6)

Run 126 (event 1)

> No Smooth

SF = 10

It could be a good technique to separate empty by full waveform. It seems that a threshold of about 0,003 over the baseline could work. To be tested!

0.07

0.06

200

Run 126 (event 1)

- Finalizing the Identification of the noise in each cell.
- Identify the first cluster in each cell.
- Distribution of the drift time in each cell.
- Charge integral distribution.
- coarse track fit from hit pattern.

Backup

Detector setup

- The chamber consists of 12 x 12 cell
- Each cell is 1 cm x 1 cm
- the wire length is 60 cm
- The voltage applied to each wire is volt about 1475V (depends by the runs)
- The gas used is 90% He 10 % i-C4H10

Test Beam

- The chamber is exposured to different types of beams (Muon, Electron, Pion and Kaon) with energy 20-60GeV
- The setup during the test beam:

- During the test beam:
 - We read just 20 cells in the central core. (Layer 7 was broken)
 - Data is stored in /lustre/cms/store/user/taliercio/TestBeam/Drift/

Distribution of the maximum volte value in all ADC channels in the new wave

