IDEA Test Beam 2018 Drift chamber

F. Grancagnolo ${ }^{1}$, G. Tasselli ${ }^{1}$, B. Testa ${ }^{1}$

R. Aly ${ }^{2}$, N. De Filippis ${ }^{2}$, A. Taliercio ${ }^{2}$
${ }^{1}$ INFN Lecce / Università del Salento
${ }^{2}$ INFN Bari / Università de Bari

RD_FA collaboration
5 Dec. 2018

Noise Identification

- We need to identify the coherent noise between the channels.
- We take two channels in the same layer beside each other "Ch1 \& Ch2"
- Build new wave form by subtracting these two wave forms.

$$
W F_{\text {new }}=W F_{1}-(\text { Divide }) * W F_{2}
$$

Where:

$$
\text { Divide }=\frac{(\text { sum volt first } 100 \text { bins) ch } 1}{(\text { sum volt first } 100 \text { bins) ch } 2}
$$

$>$ Run $126>$ Event $6>$ Ch1 \& Ch2

$>$ Run 126 (event 6)

New WF

$>$ Run 126 (event 6)

- Define the pedestal for the new wave form

Noise

Average $=\frac{(\text { sum volt first } 100 \text { bins }) \mathrm{NewWF}}{100}$

For the first 100 bin:
$>$ Distribution of the deviation of each voltage in the new wave form from the average value
$>$ This measures the white noise for single channel:
$\sigma=2,3 \mathrm{mV} / \sqrt{2}=1,6 \mathrm{mV}$

Pedestal of the new wave form

We need a strategy to distinguish full and empty waveform

Smoothing WFs

$>$ Smooth the wave forms by averaging the voltage in the neighboring channels of ADC
$>$ Trying different smoothing factor (SF)
$>$ Example: SF $=2$ => averaging 5 bins " 2 bins in left + central bin +2 bins in right"

Smooth WF1

Smooth WF2

Smoothing WFs

$>$ Example: SF = 7 => averaging 15 bins " 7 bins in left + central bin +7 bins in right"

Smooth WF1

$$
\text { SF = } 7
$$

Smoothing WFs

Smoothing WFs

$>$ Run 126 (event 1)

$>$ No Smooth

$$
S F=10
$$

$>$ It could be a good technique to separate empty by full waveform. It seems that a threshold of about 0,003 over the baseline could work. To be tested!

WF 2

Smoothing WFs

$>$ Run 126 (event 1)

No smooth

$$
S F=10
$$

New WF smooth

Next Step

- Finalizing the Identification of the noise in each cell.
- Identify the first cluster in each cell.
- Distribution of the drift time in each cell.
- Charge integral distribution.
- coarse track fit from hit pattern.

Backup

Detector setup

$>$ The chamber consists of 12×12 cell
$>$ Each cell is $1 \mathrm{~cm} \times 1 \mathrm{~cm}$
$>$ the wire length is 60 cm
$>$ The voltage applied to each wire is volt about 1475V (depends by the runs)
$>$ The gas used is $90 \% \mathrm{He}$ 10 \% i-C4H10

Test Beam

- The chamber is exposured to different types of beams (Muon , Electron, Pion and Kaon) with energy $20-60 \mathrm{GeV}$
- The setup during the test beam:

- During the test beam:
- We read just 20 cells in the central core. (Layer 7 was broken)
- Data is stored in /lustre/cms/store/user/taliercio/TestBeam/Drift/
$>$ Distribution of the maximum volte value in all ADC channels in the new wave

