Series Expansion of the Quark Mass Renormalization Group Equation: An Application of Rubi

Alexes Mes1, Jed Stephens1

1University of Cape Town

A.Mes has received funding from the Harry Crossley Research Foundation and the Joseph Stone Fund
Regularization and Renormalization

Basic Structure

- Ultraviolet (UV) singularities + Infrared (IR) singularities

Divergences in the high momentum limit

Divergences in the low momentum limit

- Regularization and Renormalization obtains finite and meaningful results from expressions containing divergences

- **Regularization** - Regulator parameter to deal with divergent integrals
 - For UV divergences: Introduce ϵ, the minimal space distance
 - Results will contain terms proportional $1/\epsilon$ which are not well defined in the limit $\epsilon \to 0$
Regularization and Renormalization

• **Renormalization**
 - There must exist observed values equal to some physical quantities that are expressed by seemingly divergent expressions.
 - Removes UV divergences by absorbing divergences into parameters of Lagrangian.
 - Calculating subtraction terms and defining Z coefficients.

• Regularization and renormalization enable us to calculate finite values for many quantities that appear divergent.
Renormalization Group Equations

- Non-physical scale parameter μ introduced to represent the point where divergences are subtracted to render amplitudes finite

- 2 renormalized quantities: the quark mass $m_q(\mu^2)$ and strong coupling $\alpha_s(\mu^2)$

- Scale dependence governed by corresponding RGE’s which rely on QCD’s anomalous dimensions as input

\[
\frac{da_s}{d \ln s} = \beta(a_s) = -a_s^2 (\beta_0 + a_s \beta_1 + a_s^2 \beta_2 + a_s^3 \beta_3 + a_s^4 \beta_4)
\]

\[
\frac{1}{m_q} \frac{d m_q}{d \ln s} = \gamma(a_s) = -a_s (\gamma_0 + a_s \gamma_1 + a_s^2 \gamma_2 + a_s^3 \gamma_3 + a_s^4 \gamma_4)
\]

where the energy parameter is set such that $s = \mu^2$
Renormalization Group Equations

\begin{align*}
\beta_0 &= \frac{1}{4} \left(11 - \frac{2}{3} n_f \right) \\
\beta_1 &= \frac{1}{16} \left(102 - \frac{38}{3} n_f \right) \\
\beta_2 &= \frac{1}{64} \left(\frac{2857}{2} - \frac{5033}{18} n_f + \frac{325}{54} n_f^2 \right) \\
\beta_3 &= \frac{1}{4^4} \left\{ \frac{149753}{6} + 3564 \zeta_3 - \left(\frac{1078361}{162} + \frac{6508}{27} \zeta_3 \right) n_f + \left(\frac{50065}{162} + \frac{6472}{81} \zeta_3 \right) n_f^2 \\ &\quad + \frac{1093}{729} n_f^3 \right\} \\
\beta_4 &= \frac{1}{4^5} \left\{ \frac{8157455}{16} + \frac{621885}{2} \zeta_3 - \frac{88209}{2} \zeta_4 - 288090 \zeta_5 \\ &\quad + n_f \left(-\frac{336460813}{1944} - \frac{4811164}{81} \zeta_3 + \frac{33935}{6} \zeta_4 + \frac{1358995}{27} \zeta_5 \right) \\ &\quad + n_f^2 \left(\frac{25960913}{1944} + \frac{698531}{81} \zeta_3 - \frac{10526}{9} \zeta_4 - \frac{381760}{81} \zeta_5 \right) \\ &\quad + n_f^3 \left(-\frac{630559}{5832} - \frac{48722}{243} \zeta_3 + \frac{1618}{27} \zeta_4 + \frac{460}{9} \zeta_5 \right) + n_f^4 \left(\frac{1205}{2916} - \frac{152}{81} \zeta_3 \right) \right\}
\end{align*}
Quark Mass RGE

\[
\frac{da_s}{d \ln s} = \beta(a_s) = -a_s^2 (\beta_0 + a_s \beta_1 + a_s^2 \beta_2 + a_s^3 \beta_3 + a_s^4 \beta_4)
\]

\[
\frac{1}{m_q} \frac{d\bar{m}_q}{d \ln s} = \gamma(a_s) = -a_s (\gamma_0 + a_s \gamma_1 + a_s^2 \gamma_2 + a_s^3 \gamma_3 + a_s^4 \gamma_4)
\]

- Linearly separable differential equation
- More lucid to solve in terms of a power expansion – provides insight into the renormalization scheme dependence of the running quark mass on the energy scale parameter at higher powers
- This is important in accurately determining the light quark mass at a chosen scale.
\[
\frac{d\overline{m}_q}{\overline{m}_q} = \frac{\gamma(a_s)}{\beta(a_s)} \, da_s \\
\ln \left(\frac{\overline{m}_q(s)}{\overline{m}_q(s^*)} \right) = \int_{a_s(s^*)}^{a_s(s)} \, da'_s \frac{\gamma(a'_s)}{\beta(a'_s)} \\
\overline{m}_q(s) = \overline{m}_q(s^*) \exp \left(\int_{a_s(s_0)}^{a_s(s)} \, da'_s \frac{\gamma(a'_s)}{\beta(a'_s)} \right)
\]
Quark Mass RGE

\[\overline{m}_q(s) = \overline{m}_q(s^*) \exp \left(\int_{a_s(s_0)}^{a_s(s)} \frac{\gamma(a'_s)}{\beta(a'_s)} \right) \]

\[
\begin{align*}
\alpha_s(s) &= \alpha_s(s^*) + \alpha_s^2(s^*) \left(-\beta_0 \eta \right) + \alpha_s^3(s^*) \left(-\beta_1 \eta + \beta_0^2 \eta^2 \right) \\
&\quad + \alpha_s^4(s^*) \left(-\beta_2 \eta + \frac{5}{2} \beta_0 \beta_1 \eta^2 - \beta_0^3 \eta^3 \right) \\
&\quad + \alpha_s^5(s^*) \left(-\beta_3 \eta + \frac{3}{2} \beta_1^2 \eta^2 + 3 \beta_0 \beta_2 \eta^2 - \frac{13}{3} \beta_0^2 \beta_1 \eta^3 + \beta_0^4 \eta^4 \right) \\
&\quad + \alpha_s^6(s^*) \left(-\beta_4 \eta + \frac{7}{2} \beta_0 \beta_1 \eta^2 + \frac{7}{2} \beta_0 \beta_3 \eta^2 - \frac{35}{6} \beta_0 \beta_1^2 \eta^3 - 6 \beta_0^2 \beta_2 \eta^3 \\
&\quad + \frac{77}{12} \beta_0^3 \beta_1 \eta^4 - \beta_0^5 \eta^5 \right),
\end{align*}
\]

where \(\eta \equiv \ln(s/s^*) \) and \(\alpha_s(s) \equiv \frac{\alpha_s(s)}{\pi} \).
Computer Algebra Systems

- Computer Algebra Systems have built-in symbolic integral routines.
- Most based on the Risch Algorithm, which can achieve the integration of any rational fraction.
- But the integral can get so messy once it’s integrated that it is beyond a recoverable form for symbolic software to simplify it.
- Quark mass renormalization integral is just such an example ...

- Use Rubi!

- Instead of applying a recursive algorithm like the Risch, Rubi looks at the integrand and identifies if it matches any of its known integration rules. These rules are in a human readable form like:

\[\int x^a \, dx = a \cdot x^{a-1} \]
Rule Based Integration (RUBI)

- Implemented as a Mathematica package that gives the user an option to inspect integration steps and application conditions.

- Applies extensive system of symbolic integration rules: Currently has +6600 rules implemented in Mathematica’s pattern matching language.

- Some of these rules are based on well integration formulas (Abramowitz, 2012; Burington, 1973; Gradshteyn, 2014; Zwillinger, 2011).

- Other rules derived during Rubi’s development.

Rule-based Integration (Rubi): An Extensive System of Symbolic Integration Rules
https://rulebasedintegration.org/
Integration tests for Computer Algebra Systems

Summary of Integration Test Results

- Rubi 4.16.1: 99.81%
- Mathematica 11.3: 72.90%
- Maple 2018.2: 54.09%
Rubi’s attempt to solve the Quark Mass RGE

\[F(a'_s) = \int da'_s \frac{\gamma(a'_s)}{\beta(a'_s)} \]

\[= \frac{\gamma_0 \ln(a'_s)}{\beta_0} - \frac{1}{4 \beta_0 \beta_4} \left\{ \left(\beta_4 \gamma_0 - \beta_0 \gamma_4 \right) \ln \left(\beta_0 + \beta_1 a'_s + \beta_2 a'_s^2 + \beta_3 a'_s^3 + \beta_4 a'_s^4 \right) \right. \]

\[+ I_0 \left(3 \beta_1 \beta_4 \gamma_0 - 4 \beta_0 \beta_4 \gamma_1 + \beta_0 \beta_1 \gamma_4 \right) + 2 I_1 \left(\beta_2 \beta_4 \gamma_0 - 2 \beta_0 \beta_4 \gamma_2 + \beta_0 \beta_2 \gamma_4 \right) \]

\[+ I_2 \left(\beta_3 \beta_4 \gamma_0 - 4 \beta_0 \beta_4 \gamma_3 + 3 \beta_0 \beta_3 \gamma_4 \right) \left\} \right. \]

where

\[I_n = \int da'_s \frac{da'_n}{\beta_0 + \beta_1 a'_s + \beta_2 a'_s^2 + \beta_3 a'_s^3 + \beta_4 a'_s^4} \]

• At this stage, Mathematica is able to re-write these integrals in terms of RootSum objects (without logarithmic divergences)
QCD Renormalization

Results

\[\bar{m}_q(s) = \bar{m}_q(s^*) \left\{ 1 - a(s^*) \gamma_0 \eta + \frac{1}{2} a^2(s^*) \eta \left[-2 \gamma_1 + \gamma_0 (\beta_0 + \gamma_0) \eta \right] \
ight. \\
- \frac{1}{6} a^3(s^*) \eta \left[6 \gamma_2 - 3 (\beta_1 \gamma_0 + 2 (\beta_0 + \gamma_0) \gamma_1) \eta + \gamma_0 (2 \beta_0^2 + 3 \beta_0 \gamma_0 + \gamma_0^2) \eta^2 \right] \\
+ \frac{1}{24} a^4(s^*) \eta \left[-24 \gamma_3 + 12 (\beta_2 \gamma_0 + 2 \beta_1 \gamma_1 + \gamma_1^2 + 3 \beta_0 \gamma_2 + 2 \gamma_0 \gamma_2) \eta \\
- 4 (6 \beta_0^2 \gamma_1 + 3 \gamma_0^2 (\beta_1 + \gamma_1) + \beta_0 \gamma_0 (5 \beta_1 + 9 \gamma_1) \eta^2 + \gamma_0 (6 \beta_0^3 + 11 \beta_0^2 \gamma_0 \\
+ 6 \beta_0 \gamma_0^2 + \gamma_0^3) \eta^3 \right] \\
+ \frac{1}{120} a^5(s^*) \eta \left[-120 \gamma_4 + \frac{1}{\beta_0} 60 \left(-7 \beta_1 \beta_2 \gamma_0 + 4 \beta_0^2 \gamma_3 + \beta_0 (7 \beta_1 \gamma_0 + \beta_3 \gamma_0 \\
+ 2 \beta_2 \gamma_1 + 3 \beta_1 \gamma_2 + 2 \beta_1 \gamma_2 + 2 \gamma_0 \gamma_3) \right) \eta - 20 \left(3 \beta_1^2 \gamma_0 + \beta_1 (14 \beta_0 + 9 \gamma_0) \gamma_1 \\
+ 3 (2 \beta_0 + \gamma_0) (\beta_2 \gamma_0 + \gamma_1^2 + 2 \beta_0 \gamma_2 + \gamma_0 \gamma_2) \eta^2 + 10 \left(12 \beta_0^3 \gamma_1 + \gamma_0^3 (3 \beta_1 + 2 \gamma_1) \\
+ \beta_0 \gamma_0^2 (13 \beta_1 + 12 \gamma_1) + \beta_0^2 \gamma_0 (13 \beta_1 + 22 \gamma_1) \right) \eta^3 - \gamma_0 \left(24 \beta_0^4 + 50 \beta_0^3 \gamma_0 \\
+ 35 \beta_0^2 \gamma_0^2 + 10 \beta_0 \gamma_0^3 + \gamma_0^4 \right) \eta^4 \right] + \mathcal{O}(a^6(s^*)) \right\} \]
The local error function, \(f(s_j) = r(s_j) - k(s_j) \), where \(r(s_j) \) is the reference value of \(m_{ud}(s_j) \) with a scale dependence calculated by direct numerical integration of the quark mass RG equation, and \(k(s_j) \) is the value of \(m_{ud}(s_j) \) with a scale dependence as either the five-loop series expansion (orange) or the four-loop series expansion (blue).
Conclusion

- Effect of fifth-loop correction term in the quark mass renormalization perturbative expansion is small, but does serve to increase it’s accuracy by about 0.5%

- **Result is not as important as the method to obtain the result**

- Can achieve same result using Mathematica only

- But requires unintuitive method and only works if series expansion converges uniformly

- The case for using **Rubi** as a tool in this situation, and in other Science, Technology, Engineering and Mathematics (STEM) research areas, is thus: it provides a **lucid and intuitive approach to solving integrals**, which **other CAS systems are often unable** to solve directly
An Application of Rubi: Series Expansion of the Quark Mass Renormalization Group Equation

GitHub Repository https://github.com/AlexesMes/light-quark-masses.

QUESTIONS ?