Bottomonia Suppression in Heavy-Ion Collisions from AdS/CFT

N. N. Barnard
University of Cape Town
31 January 2019

With thanks to W.A. Horowitz and M. Strickland
Modeling the Quark Gluon Plasma

- QCD phase diagram not well understood
- QGP formed by LHC successfully described by divergent frameworks

- Weak coupling
- LATTICE QCD

- Weak & strong coupling
- AdS/CFT

- Strong coupling
Matsui & Satz proposed that in QGP quarkonia (heavy $q\bar{q}$) can exist above T_c.

As T increases → Debye screening length drops below size of quarkonia → $q\bar{q}$ dissociates.

Matsui & Satz proposed that in QGP quarkonia (heavy $q\bar{q}$) can exist above T_c.

As T increases \rightarrow Debye screening length drops below size of quarkonia $\rightarrow q\bar{q}$ dissociates.

Sequential melting of quarkonia in QGP

Experimental Results for $\Upsilon(2S) & \Upsilon(3S)$ Melting

How do we produce theoretical predictions to quantify this data?

Quarkonia Suppression: R_{AA}

$$R_{AA} \{x\} = \frac{\text{# observed in } A + A \text{ at } \{x\}}{\left(\text{# observed in } p + p \text{ at } \{x\}\right)\left(\text{# of } p + p\text{-like collisions at } \{x\}\right)}$$

$R_{AA} < 1$ indicates suppression of quarkonia
Quarkonia Suppression: R_{AA}

$$R_{AA}(\{x\}) = \frac{\# \text{ observed in } A + A \text{ at } \{x\}}{(\# \text{ observed in } p + p \text{ at } \{x\})(\# \text{ of } p + p\text{-like collisions at } \{x\})}$$

We may predict R_{AA} from a suppression model

$$R_{AA}(p_T, b) = \frac{\int d^2 x_\perp d\phi \, T_{AA}(x_\perp, b) \, R_{AA}(p_T, y, x_\perp, b)}{2\pi N_{\text{coll}}$$

BACKGROUND

DISSOCIATION MODEL
Suppression Model

We may predict R_{AA} from a suppression model

$$R_{AA}(p_T, b) = \int d^2x_\perp d\phi \frac{T_{AA}(x_\perp, b) R_{AA}(p_T, y, x_\perp, b)}{2\pi N_{\text{coll}} d(T_{AA})}$$

Background

- Optical limit of the Glauber model
- Gives qualities of medium through which quarkonia propagates
 ($T_{AA}, N_{\text{coll}},$ temperature profile of QGP)

Dissociation model
We may predict R_{AA} from a suppression model

$$R_{AA}(p_T, b) = \frac{\int d^2 x_\perp d\phi \ T_{AA}(x_\perp, b) \ R_{AA}(p_T, y, x_\perp, b)}{2\pi N_{\text{coll}}$$

BACKGROUND

Optical limit of the Glauber model

Gives qualities of medium through which quarkonia propagates ($T_{AA}, N_{\text{coll}},$ temperature profile of QGP)

DISSOCIATION MODEL

Survival of quarkonia based on imaginary part of binding energy
Dissociation Model

Schematically:

\[R_{AA} \sim e^{-L_S[E_{bind}]} \]

We find \(E_{bind} \) from complex potential \(V \)

Theoretical Frameworks \(\rightarrow \) Heavy Quark Potential \(V \) \(\rightarrow \) Binding Energy \(E_{bind} \) \(\rightarrow \) \(R_{AA} \) for Comparison
Calculating Quarkonia Binding Energies

NRTDSWE

\[i\partial_t \Psi(r, t) = H \Psi(r, t) = \left[-\frac{1}{2m} \nabla^2 + V(r) \right] \Psi(r, t) \]

\[\Psi(r, t) = \sum_{n=0}^{\infty} c_n \psi_n(r) e^{-iE_n t} \]

Wick rotation

\[\tau \equiv it \]

\[\lim_{\tau \to \infty} \Psi(r, t) \to c_0 \psi_0(r) e^{-E_0 \tau} \]

Large \(m_Q \) and small relative \(\nu \) of heavy quarks → non-relativistic quantum mechanics
Calculating Quarkonia Binding Energies

\[i\partial_t \Psi(r, t) = H\Psi(r, t) = \left[-\frac{1}{2m}\nabla^2 + V(r) \right]\Psi(r, t) \]

\[\Psi(r, t) = \sum_{n=0}^{\infty} c_n \psi_n(r) e^{-iE_n t} \]

Wick rotation \(\tau \equiv i t \)

\[\lim_{\tau \to \infty} \Psi(r, t) \to c_0 \psi_0(r) e^{-E_0 \tau} \]

Large \(m_Q \) and small relative \(v \) of heavy quarks \(\to \) non-relativistic quantum mechanics

Real time evolution operator of wave function \(\sim e^{-iEt} \)
Calculating Quarkonia Binding Energies

NRTDSWE

\[i\partial_t \Psi(r, t) = H\Psi(r, t) = \left[-\frac{1}{2m} \nabla^2 + V(r) \right] \Psi(r, t) \]

\[\Psi(r, t) = \sum_{n=0}^{\infty} c_n \psi_n(r) e^{-iE_n t} \]

Wick rotation

\[\tau \equiv it \]

Large \(m_Q \) and **small relative** \(v \) of heavy quarks \(\rightarrow \) **non-relativistic quantum mechanics**

Real time evolution operator of wave function \(\sim e^{-iEt} \)

Imaginary time evolution operator \(\sim e^{-E\tau} \)

\[\lim_{\tau \to \infty} \Psi(r, t) \to c_0 \psi_0(r) e^{-E_0 \tau} \]
Calculating Quarkonia Binding Energies

NRTDSWE

\[i\partial_t \Psi(r, t) = H\Psi(r, t) = \left[-\frac{1}{2m} \nabla^2 + V(r)\right]\Psi(r, t) \]

Psi

\[\Psi(r, t) = \sum_{n=0}^{\infty} c_n \psi_n(r) e^{-iE_n t} \]

Wick rotation

\[\tau \equiv it \]

Limit

\[\lim_{\tau \to \infty} \Psi(r, t) \to c_0 \psi_0(r) e^{-E_0 \tau} \]

- Large \(m_Q \) and small relative \(v \) of heavy quarks \(\rightarrow \) **non-relativistic quantum mechanics**
- Real time evolution operator of wave function \(\sim e^{-iEt} \)
- Imaginary time evolution operator \(\sim e^{-E\tau} \)
- At large tau, only ground state wave function survives
Calculating Quarkonia Binding Energies

NRTDSWE

\[i\partial_t \Psi(r, t) = H\Psi(r, t) = \left[-\frac{1}{2m}\nabla^2 + V(r)\right]\Psi(r, t) \]

Wick rotation

\[\Psi(r, t) = \sum_{n=0}^{\infty} c_n \psi_n(r) e^{-iE_n t} \]

\[\lim_{\tau \to \infty} \Psi(r, t) \rightarrow c_0 \psi_0(r) e^{-E_0 \tau} \]

At large \(\tau \), only ground state wave function survives
Calculating Quarkonia Binding Energies

NRTDSWE

\[i\partial_t \Psi(r, t) = H \Psi(r, t) = \left[-\frac{1}{2m}\nabla^2 + V(r)\right] \Psi(r, t) \]

\[\Psi(r, t) = \sum_{n=0}^{\infty} c_n \psi_n(r) e^{-iE_n t} \]

Wick rotation \(\tau \equiv \imath t \)

\[\lim_{\tau \to \infty} \Psi(r, t) \to c_0 \psi_0(r) e^{-E_0 \tau} \]

At large \(\tau \), only ground state wave function survives.
Calculating Quarkonia Binding Energies

NRTDSWE

\[i\partial_t \Psi(r, t) = H\Psi(r, t) = \left[-\frac{1}{2m} \nabla^2 + V(r) \right] \Psi(r, t) \]

\[\Psi(r, t) = \sum_{n=0}^{\infty} c_n \psi_n(r)e^{-iE_n t} \]

Wick rotation \(\tau \equiv it \)

\[\lim_{\tau \rightarrow \infty} \Psi(r, t) \rightarrow c_0 \psi_0(r)e^{-E_0 \tau} \]

At large \(\tau \), only ground state wave function survives
Calculating Quarkonia Binding Energies

NRTDSWE

\[i \partial_t \Psi(r, t) = H \Psi(r, t) = \left[-\frac{1}{2m} \nabla^2 + V(r) \right] \Psi(r, t) \]

\[
\Psi(r, t) = \sum_{n=0}^{\infty} c_n \psi_n(r) e^{-iE_n t}
\]

Wick rotation

\[\tau \equiv it \]

\[
\lim_{\tau \to \infty} \Psi(r, \tau) \to c_0 \psi_0(r) e^{-E_0 \tau}
\]

At large \(\tau \), only ground state wave function survives.
Having found the ground state wave function, we can calculate E_0 using

$$E_0 = \frac{\int r^2 \, dr \, \psi_0(r)^* \, H \, \psi_0(r)}{\int r^2 \, dr \, |\psi_0|^2}$$

The binding energy E_{bind} follows from

$$E_{\text{bind}} \equiv E_0 - \Re[V(|r| \to \infty)]$$
Potential Models

pQCD

AdS/CFT

1.0 1.5 2.0 2.5 3.0
T / T_c

-\mathcal{E}_{\text{bind}} (\text{GeV})

\begin{align*}
\text{Re}[-\mathcal{E}_{\text{bind}}] & \quad \alpha_s = 0.27 \\
\text{Re}[-\mathcal{E}_{\text{bind}}] & \quad \lambda = 5.5 \\
\text{Im}[-\mathcal{E}_{\text{bind}}] & \quad \alpha_s = 0.27 \\
\text{Im}[-\mathcal{E}_{\text{bind}}] & \quad \lambda = 5.5 \\
\end{align*}

No single obvious map between parameters in QCD and \mathcal{N} = 4 SYM
Y(1S) Suppression

\[\alpha_s = 0.27 \]

\[\lambda = 5.5 \]

\[0 \leq p_T \leq 40 \]
The plot shows the $Y(1S)$ suppression as a function of N_{part}, the number of participants, and p_T, the transverse momentum. The data from CMS is represented by the orange circles. The blue line represents the pQCD prediction with $\alpha_s = 0.27$, while the green line is the AdS/CFT prediction with $\lambda = 5.5$. The dashed red line represents the pQCD prediction with KRS E_{bind}, and the black dashed line is the AdS/CFT prediction with $\lambda = 5.5$.

- **Y(1S) suppression from pQCD consistent with data**
- **AdS/CFT overpredicts $Y(1S)$ suppression compared to data**
- Large sensitivity to background - R_{AA} for KRS E_{bind} using Glauber smaller than that found using aHydro
- If our pQCD E_{bind} more correct, better background may $\rightarrow R_{AA}$ inconsistent with data
- AdS/CFT may be consistent with more sophisticated suppression model & p_T-dependent potential

Conclusions & Outlook

Quantifying dissociation of quarkonia in a medium useful probe of QGP properties

Suppression (R_{AA}) calculated from binding energies of quarkonia by solving NRTDSWE in imaginary time

First results for suppression of strongly coupled $\Upsilon(1S)$ in isotropic QGP presented

AdS/CFT significantly overpredicts $\Upsilon(1S)$ suppression compared to data

Future work:

- Comparison of binding energies to those from independent semi-classical string theory calculations
- Use of velocity dependent potentials
- More sophisticated modeling of medium background & dissociation model
- Thorough investigation of systematic theoretical uncertainties in quarkonia R_{AA}
BACK-UP SLIDES
Complex Ritz Variational Method

c-product: \((\psi|\phi) = \int_{\mathbb{R}^n} \psi(\bar{x})\phi(\bar{x}) \, d^n x \)

Given eigenvalue problem \(H\psi(\bar{x}) = E\psi(\bar{x}) \) where \((\psi|\psi) \neq 0 \)

Rayleigh quotient: \(R(\bar{\alpha}) \equiv \frac{(\psi|\hat{H}|\psi)}{(\psi|\psi)} \)

where \(\psi(\bar{x}; \bar{\alpha}) \) parameter-dependent trial wave function \(\bar{\alpha} \in \mathbb{C}^m \)

If \(H\psi(\bar{x}; \bar{\alpha}_0) = E\psi(\bar{x}; \bar{\alpha}_0) \) for \(\psi(\bar{x}; \bar{\alpha}_0) \)

given \((\psi(\bar{\alpha}_0)|\psi(\bar{\alpha}_0)) \neq 0 \), then \(\frac{\partial R(\bar{\alpha}_0)}{\partial \alpha_i^0} = 0 \)
Complex Ritz Variational Method

c-product: \((\psi | \phi) = \int_{\mathbb{R}^n} \psi(\vec{x}) \phi(\vec{x}) \, d^n x \)

Given eigenvalue problem \(H \psi(\vec{x}) = E \psi(\vec{x}) \) where \((\psi | \psi) \neq 0 \)

Rayleigh quotient: \(R(\vec{\alpha}) \equiv \frac{(\psi | \hat{H} | \psi)}{(\psi | \psi)} \)

where \(\psi(\vec{x}; \vec{\alpha}) \) parameter-dependent trial wave function \(\vec{\alpha} \in \mathbb{C}^m \)

If \(H \psi(\vec{x}; \vec{\alpha}_0) = E \psi(\vec{x}; \vec{\alpha}_0) \) for \(\psi(\vec{x}; \vec{\alpha}_0) \)
given \((\psi(\vec{\alpha}_0) | \psi(\vec{\alpha}_0)) \neq 0 \), then \(\frac{\partial R(\vec{\alpha}_0)}{\partial \alpha_i^0} = 0 \)

stationary state wave function of eig problem!
Y(1S) Suppression vs p_T

Cent. 0–100%

- **pQCD**
- **pQCD (KRS E_{bind})**
- **pQCD (KRS Full)**
- **AdS/CFT $\alpha_s = 0.27$**
- **AdS/CFT $\lambda = 5.5$**
- **Y(1S) (CMS)**
\[\Re[V(r)] = -\frac{\alpha}{r}(1 + \mu r)e^{-\mu r} + \frac{2\sigma}{\mu}(1 - e^{-\mu r}) - \sigma r e^{-\mu r} - \frac{0.8\sigma}{m_Q^2 r} \]

\[\Im[V(r)] = \alpha T \left\{ \phi(\hat{r}) - \xi [\psi_1(\hat{r}, \theta) + \psi_2(\hat{r}, \theta)] \right\} \]

where \[\phi(\hat{r}) \equiv 2 \int_0^\infty dz \frac{z}{(z^2 + 1)^2} \left[1 - \frac{\sin (z\hat{r})}{z\hat{r}} \right] \]

\[\alpha = 0.385 \]
\[\sigma = 0.223 \text{ GeV}^2 \]
\[m_Q = 1.3 \text{ GeV} \]
\[\mu = m_D \simeq 3p_{\text{hard}} \]
\[\hat{r} = m_D r \]
\[T = p_{\text{hard}} \]
Strongly Coupled Potential from AdS/CFT

\[V_s(r) = \frac{\sqrt{\lambda}}{2c_0\pi} \left[-\frac{1}{z_{\text{max}}} \left(1 - \frac{z_{\text{max}}^4}{z_h^4} \right) F\left(\frac{1}{2}, \frac{3}{4}; \frac{1}{4}; \frac{z_{\text{max}}^4}{z_h^4} \right) + \frac{1}{z_h} \right] \]

where \(c_0 = \Gamma^2 \left(\frac{1}{4} \right) / (2\pi)^{3/2} \), \(z_h = 1/\pi T \),

and \(z_{\text{max}} \) is found using

\[rc_0 = \frac{z_{\text{max}}}{z_h^2} \sqrt{z_h^4 - z_{\text{max}}^4} \left(\frac{1}{2}, \frac{3}{4}; \frac{1}{4}; \frac{z_{\text{max}}^4}{z_h^4} \right) \]

Solid root chosen over complex conjugate to ensure \(\text{Im}[V_s] < 0 \rightarrow \text{probability of state} < 1 \)
Strongly Coupled Potential from AdS/CFT

\[V_s(r) = \frac{\sqrt{\lambda}}{2c_0 \pi} \left[-\frac{1}{z_{\text{max}}} \left(1 - \frac{z_{\text{max}}^4}{z_h^4} \right) F \left(\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{z_{\text{max}}^4}{z_h^4} \right) + \frac{1}{z_h} \right] \]

where \[c_0 = \Gamma^2 \left(\frac{1}{4} \right) / (2\pi)^{3/2} , \quad z_h = 1/\pi T , \]

and \[z_{\text{max}} \] is found using

\[r c_0 = \frac{z_{\text{max}}^2}{z_h^2} \sqrt{z_h^4 - z_{\text{max}}^4} F \left(\frac{1}{2}, \frac{3}{4}, \frac{5}{4}, \frac{z_{\text{max}}^4}{z_h^4} \right) \]