

#### NUMERICAL PRECISION

wholly owned susubsidary of George industries LLC

#### Let's talk about precision

Hadrien Grasland CNRS – LAL 2018-12-17

## Know your friend / enemy

- IEEE floating-point in a nutshell:
  - ± 1.0100100111011 2<sup>±010011101</sup> mantissa
- Consequences:
  - Base 2 → Even good old 0.1 isn't exact!
  - Precision relative to exponent / order of magnitude
  - Unbounded loss of accuracy on subtract / add
  - Very small / large numbers need care

# **Comparing FP numbers**

- How to tell if val ≈ ref?
  - FP precision is relative  $\rightarrow$  Relative comparison often best
  - Typical algorithm looks like  $|val ref| < tol \cdot |ref|$
  - Nice side-effect: tolerance is (mostly) data-agnostic
- Two limits of relative comparisons
  - Orders of magnitude may matter (e.g. spatial tolerances)
  - Breaks down when reference is close to zero

# Some choice can be good

- When in doubt, start with relative comparisons
- If they prove inadequate, consider other algs...
  - Absolute comparisons : |val ref| < tol
  - « Small enough » : |val| < tol</p>
  - « Close or small » : relative unless val & ref are both small
  - L2 norm of difference of matrices vs ref matrix, etc.

# Too much choice will kill you

- FP test assertions currently used in ACTS :
  - BOOST\_CHECK\_CLOSE(val, ref, tol)
  - BOOST\_CHECK\_CLOSE\_FRACTION(val, ref, tol)
  - BOOST\_CHECK\_SMALL(val, tol)
  - BOOST\_TEST(val == ref[, tol]
  - BOOST\_CHECK(val.isApprox(ref[, tol]))
  - checkCloseXyz(val, ref)
  - STL container element-wise comparison (test-specific)

## **Consistency matters**

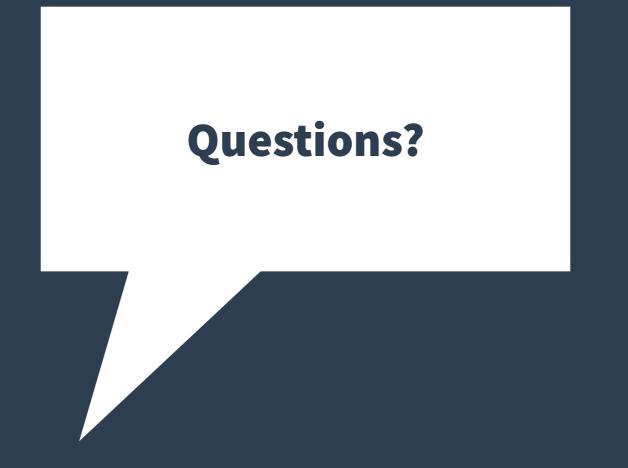
- The previous assertions disagree on many things:
  - Are relative tolerances given as fractions? Percentages?
  - Can I compare floats with integers? Doubles?
  - Does it work with scalars? Eigen types? STL containers?
  - Is there a default tolerance? A hidden global one?
  - What happens when a value/reference is near zero?
  - Are matrices compared element-wise or by L2 norm?
  - How good is the error reporting?

# Trying to improve upon this

- Key goal: Assertions should be easy to understand
  - Follow typical & shared conventions
  - Inputs are explicit (nothing global, nothing hardcoded)
  - Simple, general-purpose and predictable logic
- Some flexibility on comparison algs, input types
- Report errors as clearly as possible
- My attempt at resolving this: acts-core!490

#### One remaining problem

/root/acts-core/Tests/Integration/PropagationTestHelper.hpp(527):
error: in "covariance\_transport\_disc\_disc\_/\_45":
check Acts::Test::checkCloseOrSmall((calculated\_cov),
 (obtained\_cov), (reltol), (1e-4)) has failed. [...]


| The                   | failure  | occured during | a matrix cor | mparison, wher | e the value was |
|-----------------------|----------|----------------|--------------|----------------|-----------------|
|                       | 35447.7  | 31.4111        | -1.80979     | 59.5127        | 0.291849        |
|                       | 31.4111  | 25761.4        | 53.0901      | 1.53086        | -8.93186        |
|                       | -1.80979 | 53.0901        | 0.112616     | 3.72723e-06    | -0.0356915      |
|                       | 59.5127  | 1.53086        | 3.72723e-06  | 0.1            | -1.98435e-11    |
|                       | 0.291849 | -8.93186       | -0.0356915   | -1.98435e-11   | 0.1             |
| and the reference was |          |                |              |                |                 |
|                       | 35448    | 20.9458        | -1.8162      | 59.5128        | 0.291879        |
|                       | 20.9458  | 25864.9        | 53.1939      | 1.52074        | -8.93245        |
|                       | -1.8162  | 53.1939        | 0.112616     | 1.91157e-06    | -0.0356914      |
|                       | 59.5128  | 1.52074        | 1.91157e-06  | 0.1            | 0               |
|                       | 0.291879 | -8.93245       | -0.0356914   | Θ              | 0.1             |

#### Help wanted!

- Seeing this now because we used isApprox() before
  - isApprox() based on L2 norm: ||val-ref|| < tol · ||ref||</p>
  - Comparison dominated by large diagonal terms
  - But... does L2 norm make sense for covariance?
- Question: how should I handle this issue?
  - Is this difference physically significant?
  - Should I consider it to be a propagator bug?

# Beyond that: single precision experiment

- Step 1: Evaluate SP tolerances of ACTS code 
   → OK
  - acts-core!491: Making tests pass under Verrou emulation
  - Affected by previous issue, otherwise looking good...
- - Need review from someone who knows the physics!
- Step 3: Fix the unacceptable part → TBD
  - Look out for easy « precision bottlenecks »
  - Move what we can to SP, keep rest in double precision

