LHC detectors
P. Ferreira da Silva (CERN)
Course on Physics at the LHC
LIP, 11th-13th March 2019
Outline

• From collision remnants to physics
• Connecting the dots with tracking
• Si-based detectors
• Calorimetry for pedestrians
• Getting data on tape: trigger systems
From collision remnants to physics
We hunt for new physics with exciting signatures
Discovery drives the LHC detectors concept

- Before discovery different signatures to be expected depending on the Higgs mass
- 4π-hermetic general purpose detectors are needed covering: leptons, photons, jets, …

![Diagram showing different Higgs mass and natural width regions with decay channels like $H \rightarrow ZZ \rightarrow 4l^{\pm}$, $H \rightarrow ZZ \rightarrow 11\nu\nu$, $H \rightarrow ZZ, WW \rightarrow 11jj, 1\nu jj$]
Proton-remnants underly the hard processes

- Single proton collisions produce high multiplicity events
Proton remnants underly the hard processes

- Single proton collisions produce high multiplicity events
- Distributions are approximately uniform in pseudo-rapidity

Average 15-20 charged particles per inelastic collision
• Single proton collisions produce high multiplicity events

• Distributions are approximately uniform in pseudo-rapidity

• Most particles are pions with strong interactions preserve isospin

\[N(\pi^0) \approx \frac{1}{2} N(\pi^\pm) \]

\[\pi^+ = |ud\rangle \]
\[\pi^- = |\bar{u}d\rangle \]
\[\pi^0 = \frac{1}{\sqrt{2}} (|u\bar{u}\rangle - |d\bar{d}\rangle) \]

strong interactions preserve isospin
Proton-remnants underly the hard processes

- Single proton collisions produce high multiplicity events
- Distributions are approximately uniform in pseudo-rapidity
- Most particles are pions with $N(\pi^0) \approx \frac{1}{2} N(\pi^\pm)$
- As $\pi^0 \to \gamma\gamma$ dominates $N(\gamma) \approx N(\pi^\pm)$ in the detector
Beyond pions and photons

- Production of other particles suppressed by
 - content of the proton (PDFs)
 - mass ($m_s \sim 19m_d$)
 - interactions

Strange particles account for $O(10\%)$ of the multiplicities
What can we detect?

• Final states
 • secondary vertices from long-lived decays only in rare cases

• Must interact within detector volume
 • electromagnetic or strong interactions
 • electrons, muons, photons
 • neutral or charged hadrons

• Long-lived weakly interacting particles
 • indirectly detected
 • missing transverse energy
 • good resolution when balancing energy

maximum information needed to reconstruct the hard process
Particles and their interactions

- Detectors register the passage of particle through matter
- Combine absorbers (start interactions) with sensitive materials (convert to optical/voltage)
Main concepts behind general purpose detectors

Magnetic field \(F_c = qvB \)
- separate by charge
- measure \(p \) by curvature

Calorimetry
- measure \(E \) from deposits
- electromagnetic and hadronic

Inner tracking
- minimal interference with event
- points to measure curved tracks
- particle identification

Outer tracking
- muons (weakly interacting)
The two general purpose detectors

- Standalone measurement of $p(\mu)$
- Resolution is flat in η and independent of pileup
- Two complementary $p(\mu)$ measurements
- Tracks point to primary vertex
Particles and their interactions
Material distribution in general purpose detectors

B field source

High-Z materials

Dense materials (e.g. Iron, Copper, Brass, Stainless Steel, Uranium)

Lightweight materials (Si, gaseous)

It’s a challenge to fit it all within volume trade-off between best energy resolution and particle identification
\(\sigma/E \approx 3\% / E^{1/2} \)

\(27X_0 \)

\(3.8 \text{ T} \)

\(\sigma/E \approx 74\% / E^{1/2} \)

\(6.6\lambda_t \)
>60\% of the energy of a jet may be reconstructed at the level of the tracker.
Example: a jet of 5 particles

- Reconstruction starts in the tracker (start from easy tracks, use remaining hits for others)
 - but that does 2/3 particles in this jet

\(p_T = 35 \text{ GeV} \)
Example: a jet of 5 particles

- Coarse granularity in the hadronic calorimeter
- See local energy maxima, connect neighbours
- Determine energy sharing iteratively
Example: a jet of 5 particles

- The electromagnetic calorimeter sees things in coarser detail ($\Delta \phi, \Delta \eta \sim 0.02$)
- Use to refine entry point in calorimeter, link to tracks and balance energy
- Cluster energy unassociated to tracks: photons and neutral hadrons
Particle flow algorithm is a reconstruction paradigm

Cluster linked to track?

N

Photon (e.m. cluster)
Neutral hadron (had cluster)

Y

Electron (track+e.m. cluster)
Charged pion (track+had cluster)

Y

Muon (track)

E_{\text{track}} \text{ compatible with } E_{\text{calo}}?

deficit
excess

Split cluster until balanced

it also shapes the re-design of the detectors for Phase II of the LHC
Particle flow algorithm is a reconstruction paradigm
Connecting the dots with tracking
Why?

- **Identify the vertex** from the hard interaction

...but also secondary vertices from long lived particles
Why?

• Identify the vertex from the hard interaction

...but also secondary vertices from long lived particles

• Measure particle trajectories

 • momentum (p), energy loss (dE/dx), link to coarser calorimeters and muon chambers

JHEP 07 (2013) 122
arXiv:1411.4413
With what?

- Solid state detectors
 - Ge, Si, Diamond,...
 - pixels and strips
With what?

- Gaseous detectors
 - drift tubes, resistive plate chambers, cathod strip chambers, gas electron multipliers, ...
 - usually for outer tracking
How?

• While transversing a medium a charged particle leaves an ionization trace

 • create a depletion zone in between electrodes: gaseous, liquid or solid-state (semi-conductor)

 • ionization charges drift towards electrodes

 • amplify electric charge signal and deduce position from signals collected in individual strips

ionization chamber ≈ **Si strip detector**
Gaseous versus solid state

- In solid state detectors ionization energy converts in e-h pairs
 - 10 times smaller with respect to gaseous-based ionization
 - charge is increased → improved E resolution

<table>
<thead>
<tr>
<th>Density (g/cm³)</th>
<th>Gas</th>
<th>Solid state</th>
<th>Atomic number (Z)</th>
<th>Gas</th>
<th>Solid state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>C₂H₂F₄</td>
<td>High</td>
<td>Low</td>
<td>(~95% for CMS RPC)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Ionization energy (εᵢ)</td>
<td>Moderate</td>
<td>Low</td>
<td>30eV</td>
<td>Low</td>
<td>3.6eV</td>
</tr>
<tr>
<td>Signal speed</td>
<td>Moderate</td>
<td>Fast</td>
<td>10ns-10μs</td>
<td><20ns</td>
<td></td>
</tr>
</tbody>
</table>

\[n = \frac{E_{\text{loss}}}{E_{\text{eh}}} \rightarrow \frac{\sigma_E}{E} \propto \frac{1}{\sqrt{n}} \propto \sqrt{\frac{E_{\text{eh}}}{E_{\text{loss}}}} \]
Gaseous versus solid state

- Higher density materials are used in solid state detectors
 - charge collected is proportional to the thickness
 - most probable value for Silicon

\[\frac{\Delta p}{x} \sim 0.74 \cdot 3.876 \text{ MeV/cm} \rightarrow N_{eh} \sim \frac{23 \cdot 10^3}{300 \mu m} \]

- excellent spatial resolution: short range for secondary electrons
Inner tracking at the LHC

- CMS strips
- CMS pixels
- LHCb VELO
- ATLAS SCT
- ALICE pixels
- LHCb SciFi
- ATLAS pixels (inner barrel layer)
- ALICE ITS
- 2 x ~2.5 m
Outer ↔ inner tracking
Coordinates for tracking

- The LHC experiments use a uniform B field along the beam line (z-axis)
 - trajectory of charged particles is an helix – radius R
 - use transverse (xy) and longitudinal (rz) projections
 - pseudo-rapidity: $\eta = -\ln \tan \frac{\theta}{2}$
 transverse momentum: $p_T = p \sin \theta = \frac{p}{\cosh \eta}$

- Impact parameter is defined from distance of closest approach to primary vertex
Resolution for the impact parameter

• Depends on radii+space point precisions

• For two layers we expect

\[\sigma^2_{d0} = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2} \]

• Improve with small \(r_1 \), large \(r_2 \)

• Improves with better \(\sigma_i \)
Resolution for the impact parameter

- Depends on radii + space point precisions

- For two layers we expect
 \[\sigma_{d_0}^2 = \frac{r_2^2\sigma_1^2 + r_1^2\sigma_2^2}{(r_2 - r_1)^2} \]
 - Improve with small \(r_1 \), large \(r_2 \)
 - Improves with better \(\sigma_i \)

- Precision is degraded by multiple scattering
 - Gaussian approximation is valid
 - Width given by

\[
\theta_0 = \frac{13.6\text{MeV}}{\beta\epsilon p} z \sqrt{x / X_0} [1 + 0.038 \ln(x / X_0)]
\]

- Extra degradation term for \(d_0 \)
 \[\sigma_{d_0} \sim \theta_0 \]
Resolution for the impact parameter

- For a track with $\theta \neq 90^0$ we can write $r \rightarrow r/\sin\theta$ and $x \rightarrow x/\sin\theta$

- By substitution in the formulas of the previous slide we have:

$$\sigma_{d_0} \sim \sqrt{\frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2} \left(r + \frac{a}{p \sin^{3/2} \theta} \right) + \frac{b}{p_T \sin^{1/2} \theta}}$$

- Typical resolution expected/measured
 - $100 \, \mu m$ @ 1 GeV
 - $20 \, \mu m$ @ 20 GeV

- Typical lifetimes (rest frame)
 - $B \sim 500 \, \mu m$
 - $D^0 \sim 120 \, \mu m$
 - $\tau \sim 87 \, \mu m$
Momentum measurement

- Circular motion under uniform B-field

\[p_T[\text{GeV}] = 0.3 \times q \times B[\text{T}] \times R[\text{m}] \]

- Typically measure the sagitta
 - deviation to straight line relates to R by

\[R = \frac{L^2}{2s} + \frac{s}{2} \approx \frac{L^2}{2s} \]

- Uncertainty in pT measurement improves with B, number of hits and path

\[\frac{\sigma_{pT}}{p_T} = \frac{8p_T}{0.3BL^2\sigma_s} \]

- Multiple scattering introduces, again extra degradation

\[\frac{\sigma_{pT}}{p_T} \sim ap_T \pm \frac{b}{\sin^{1/2}\theta} \]
Momentum resolution

\[\frac{\sigma_{p_T}}{p_T} \sim a p_T \oplus \frac{b}{\sin^{1/2} \theta} \]

\[\sigma(d\sigma/dp_T) \]

\[0 < \eta < 0.8 \]

\[p_T \text{ [GeV/c]} \]

\[\eta \text{ [rad]} \]
Si-based detectors
Usage of Si-based trackers for HEP

- **Kemmer, 1979** transferred Si-technology for electrons to detector - NIM 169(1980)499

- **NA11/32** spectrometer at CERN →
 - 6 planes Si-Strip, <2k channels
 - Resolution ~4.5μm

- **SLD** vertex detector at SLAC →
 - 120-307 M pixels: 0.4%X0
 - Resolution <4μm, d_0~11-9μm

- **ALEPH** detector at LEP →
 - Enable precise measurements for B-physics (lifetime, b-tagging)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Detectors</th>
<th>Channels (10^3)</th>
<th>Si area [m2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleph (LEP)</td>
<td>144</td>
<td>95</td>
<td>0.49</td>
</tr>
<tr>
<td>CDF II (TEV)</td>
<td>720</td>
<td>405</td>
<td>1.9</td>
</tr>
<tr>
<td>D0 II (TEV)</td>
<td>768</td>
<td>793</td>
<td>4.7</td>
</tr>
<tr>
<td>AMS II</td>
<td>2300</td>
<td>196</td>
<td>6.5</td>
</tr>
<tr>
<td>ATLAS (LHC)</td>
<td>4088</td>
<td>6300</td>
<td>61</td>
</tr>
<tr>
<td>CMS (LHC)</td>
<td>15148</td>
<td>10000</td>
<td>200</td>
</tr>
</tbody>
</table>
Ionization energy loss in the Si

Most probable value of the Landau distribution for energy loss defines the minimum ionizing particle.
Si properties

- Widely used in high energy physics and industry
- Low ionization energy
 - Band gap is 1.12 eV
 - Takes 3.6 eV to ionize atom → remaining yields phonon excitations
- Long free mean path → good charge collection efficiency
 - High mobility → fast charge collection
 - Low Z → reduced multiple scattering
- Good electrical properties (SiO$_2$)
- Good mechanical properties
 - Easily patterned to small dimensions
 - Can be operated at room temperature
 - Crystalline → resilient against radiation
Bond model of semi-conductors

- Covalent bonds formed after sharing electrons in the outermost shell

- Thermal vibrations
 - break bonds and yield electron conduction (free e^-)
 - remaining open bonds attract free e^- → holes change position → hole conduction

T = 0 K

T > 0 K

[Diagram showing bond structure at 0 K and 0 K with thermal vibrations and electron movement]
Energy bands structure compared

- In solids, the quantized energy levels merge
 - **Metals**: conduction and valence band overlap
 - **Insulators and semi-conductors**: conduction and valence band separated by energy (band) gap
 - If μ (band gap) sufficiently low: electrons fill conduction band according to Fermi-Dirac statistics
Intrinsic carrier concentration

• Energy state occupation probability follows Fermi statistics distribution

\[f(E) = \frac{1}{e^{(E-E_\mu)/k_BT} + 1} \]

• Typical behaviour @ room temperature
 • excited electrons move to conduction band
 • electrons recombine with holes

• Excitation and recombination in thermal equilibrium

• Intrinsic carrier concentration given by

\[n_e = n_h = n_i = A \cdot T^{3/2} \cdot e^{-E_g/2k_BT} \]

with \(A = 3.1 \times 10^{16} \text{ K}^{-3/2} \text{cm}^{-3} \) and \(E_g/2k_B = 7 \times 10^3 \text{K} \)

\[n_i \sim 1.45 \times 10^{10} \text{ cm}^{-3} \]

\[\Rightarrow 1/10^{12} \text{ Si atoms is ionized} \]
Energy loss in the Si: the Landau PDF
MIP as function of the energy: Bethe-Bloch curve

Example: Si detector with thickness $d=300\,\mu\text{m}$
Intrinsic S/N in a Si detector

For a 300μm thickness sensor

- Minimum ionizing particle (MIP) creates:

\[
\frac{1}{E_{eh}} \frac{dE}{dx} \cdot d = \frac{3.87 \cdot 10^6 \text{eV/cm}}{3.63 \text{eV}} \cdot 0.03 \text{cm} = 3.2 \cdot 10^4 \text{eh pairs}
\]

- Intrinsic charge carriers (recall slide 43):

\[
n_i \cdot d = 1.45 \cdot 10^{10} \text{cm}^{-3} \cdot 0.03 \text{cm} = 4.35 \cdot 10^8 \text{eh pairs}
\]

Number of thermally-created e-h pairs exceeds mip signal by factor 10!
Si doping: n-dope bond model

- Doping with a group 5 atom (e.g. P, As, Sb)
 - atom is an electron donor/donator
 - Weakly bound 5th valence electron
 - Positive ion is left after conduction electron is released
Si doping: n-dope bond model II

- Energy level of donor is below edge of conduction band
 - Most electrons enter conduction band at room temperature
 - Fermi level moves up with respect to pure Si
Si doping: p-dope bond model

- Doping with a group 3 atom (e.g. B, Al, Ga, In)
 - atom is an electron acceptor
 - open bond attracts electrons from neighbouring atoms
 - acceptor atom in the lattice becomes negatively charged

[Diagram of Si doping with B atom]
Si doping: p-dope bond model - II

- Energy level of acceptor is above edge of conduction band
 - Most levels are occupied by electrons → holes in the valence band
 - Fermi level moves down with respect to pure Si
p-n junctions

- Difference in Fermi levels at the interface of n-type or p-type
 - diffusion of excess of charge carriers until thermal equilibrium (or equal Fermi level)
 - remaining ions create a depletion zone: electric field prevents further the diffusion
p-n junctions

pn junction scheme

concentration of free charge carriers

acceptor and donator concentration

electric field

space charge density

electric potential

Θ ... acceptor + ... empty hole
⊕ ... donator − ... conduction electron
Biasing p-n junctions

Forward-biased junction
- Anode to p, cathode to n
- Depletion zone becomes narrower
- Smaller potential barrier facilitates diffusion
- Current across the junction tends to increase

Reverse-biased junction
- Anode to n, cathode to p
- e, h pulled out of the depletion zone
- Potential barrier is suppressed
- Only leakage current across junction
Depletion zone width and capacitance

- Characterize depletion zone from Poisson equation with charge conservation:

- Typically: \(N_a = 10^{15} \text{ cm}^{-3} \) (p+ region) >> \(N_d = 10^{12} \text{ cm}^{-3} \) (n bulk)

- **Width of depletion zone** (n bulk):

<table>
<thead>
<tr>
<th>Reverse bias voltage (V)</th>
<th>(W_p) (µm)</th>
<th>(W_n) (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.02</td>
<td>23</td>
</tr>
<tr>
<td>100</td>
<td>0.4</td>
<td>363</td>
</tr>
</tbody>
</table>

- Device is similar to a parallel-plate capacitor

- Depletion voltage saturates the capacitance

- Typical curve obtained for CMS strip detector
Leakage current

- Thermal excitation generates eh pairs
- Reverse bias applied separates pairs
- eh pairs do not recombine and drift
 ⇒ leakage current

- Depends on purity, defects and temperature:
 \[j_{\text{gen}} \propto T^{3/2} e^{\frac{1}{k_B T}} \]

⇒ usually require detector cooling for stable operation (-30°-10°C)

Factor 2 every 8 °C
Charge collection

- eh pairs move under the electric field
- larger biases smaller collection times
- typically smaller than LHC bunch crossing

Simulation by Thomas Eichhorn (KIT)

charge collection simulation for a 45° incident particle
Position resolution (DC coupled)

- Segmentation of the implants determines precision in position reconstruction

- Typical configuration
 - p implants in strips
 - n-doped substrate ~300μm (2-10kΩcm)
 - depletion voltage <200 V
 - backside P implant establishes ohmic contact
 - Al metallisation

- Field is closest to the collecting electrodes (where most of the signal is)
Position resolution (AC coupled)

• AC coupling blocks leakage current from amplifier
• Deposit SiO$_2$ between p$^+$ and Al strip
 • Capacitance ~32 pF/cm
 • Shorts through pinholes may be reduced with a second layer of Si$_3$N$_4$
• Use large poly silicon resistor (R>1MΩ) connecting the bias voltages to the strips
CMS module

- silicon sensors
- ~20 cm strip length
- carbon fibre support
- pitch adapter
- hybrid front-end electronics with read-out chips
- kapton flat cables for power and data
Pixel sensors

- High track density better resolved with 2D position information
 - back-to-back strips for 2D position information → yields “ghost” hits
- Hybrid pixel detectors with sensors and bump-bonded readout chips

one sensor, 16 front-end chips and 1 master controller chip
Hybrid Pixel Module for CMS

Sensor:
- Pixel Size: 150mm x 100mm
 - Resolution $\sigma_{r-\phi} \sim 15\mu m$
 - Resolution $\sigma_z \sim 20\mu m$
- n+-pixel on n-silicon design
 - Moderated p-spray \rightarrow HV robustness

Readout Chip:
- Thinned to 175μm
- 250nm CMOS IBM Process
- 8” Wafer
Performance: S/N

- **Signal** depends on the thickness of the depletion zone and on dE/dx of the particle

- **Noise** suffers contributions from:
 - Optimizing S/N
 - \(N_{\text{ADC}} > \text{thr} \), given high granularity most channels are empty
 - decrease noise terms (see above)
 - minimize diffusion of charge cloud after thermal motion
 - (typically \(~8\mu m\) for 300\(\mu m\) drift)
 - radiation damage severely affects S/N (next slide)
Influence of radiation

- Si is not fully robust against radiation
 - induced defects result in noise, inefficiency, leakage,…
 - need to increase depletion voltage at higher fluences
 - expected hit finding efficiency after 10 years of LHC operation: 95%
CMS tracker

- **Pixel detector:** $\sim 1 \text{m}^2$ area
 - 1.4k modules \Rightarrow 66M pixels
- **Strips:** $\sim 200 \text{m}^2$ area
 - 24k single sensors, 15k modules
 - 9.6M strips = electronics channels
 - 75k readout chips
CMS tracker budget

- In some regions can attain $1.8X_0$
 - often photons will convert, electrons will radiate :(
 - use for alignment and material budget estimation :)
- Precise knowledge is crucial, e.g. for Higgs with γ and electrons in the final state

[Image of graph showing $\langle 1/X_0^2 \rangle$ vs η]
• Use photon conversions ($\gamma \rightarrow e^+e^-$)
 • probability of interaction depends on the transversed material ($1-e^{-x/X_0}$)
 • 54% of the $H \rightarrow \gamma\gamma$ events have are expected to have at least one conversion
Electrons

They brems!
Brem photons convert

Conversion tracks collect secondary electron clusters

Track momentum change followed by Gaussian Sum Filter

Brem clusters collected by « track tangents »
Calorimetry for pedestrians
Recall: we measure what collapses in the detector

- Particles need to interact in matter \Rightarrow destructive interaction
 - dE/dx is converted in a signal
 - collect: charge, light, heat

Cerenkov radiation

scintillation

Ionization excitation of base plastic

<table>
<thead>
<tr>
<th>Layer</th>
<th>Effect</th>
<th>Fluor</th>
<th>Fluor Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-8} m</td>
<td>Forster energy transfer</td>
<td>base plastic</td>
<td>\sim1% wt/wt</td>
</tr>
<tr>
<td>10^{-4} m</td>
<td>emit UV, \sim340 nm</td>
<td>primary fluor</td>
<td>\sim0.05% wt/wt</td>
</tr>
<tr>
<td>1 m</td>
<td>absorb UV photon</td>
<td>secondary fluor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>emit blue, \sim400 nm</td>
<td>photodetector</td>
<td></td>
</tr>
</tbody>
</table>

hadron

ionization
Purpose of a calorimeter

- Primarily they measure the total energy of a particle, but they are versatile
 - can measure position, angle and timing
 - infer energy of neutrinos after energy balance

- General properties
 - length of showers induced in calorimeters increase logarithmically with E
 - energy resolution improves with E
 - fast signals, easy to reconstruct (unlike tracking) \Rightarrow trigger

- Almost impossible to do high energy physics without calorimeters
A very brief historical overview

- Nuclear Physics in the 50’s usage of semi-conductor devices improving the energy measurement of radiation energy
- Cosmic Rays (1958) - the first sampling calorimeter
- Particle Physics: adoption of electromagnetic and some times hadronic calorimeters as crucial components in experiments
 - Uranium/compensation (1975) - uniformize response to e/γ and hadrons to improve resolution
 - 4π calorimeters
 - High precision calorimetry with crystals, liquid Argon, scintillating fibers
- Particle flow calorimeters for HL-LHC, CLIC/ILC (weighing more on reconstruction than hardware…)
Calorimetry in LHCb

Plastic+metal sandwiches
Calorimetry in ALICE

- PHOS
- PbWO$_4$ crystals
- EMCAL
- Lead+Scintillator
Electromagnetic calorimeters

- e/γ loose energy interacting with nuclei and atomic electrons
 - ionization
 - bremmstrahlung
 - photoelectric effect
 - Compton scattering
 - pair production

- e.m. showers will evolve very similarly independently on how they start
 - subsequent e or γ will branch according to these interactions
Processes initiated by electrons

Critical energy \((E_c)\): ionization and radiation are at the same level

\[
E_c \propto \frac{1}{Z + \text{cte}}
\]

7 MeV for Lead

Radiation length \((X_0)\): quantifies by how much the energy flux is reduced by 1/e

\[
X_0 \approx \frac{716 \ [\text{gcm}^{-2}] \ A}{Z(Z + 1) \ln(287/\sqrt{Z})}
\]

0.56cm for Lead
Processes initiated by photons

- Photo-electric effect
 \[\sigma \approx Z^5 \alpha^4 \left(\frac{m_e c^2}{E} \right)^{-7/2} \]

- Compton scattering
 \[\sigma \approx Z \left(\frac{\ln E}{E} \right) \]

- Pair production
 \[\sigma \approx \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0} \propto Z(Z + 1) \]

The probability to convert after \(1X_0\) is \(e^{-7/9}\).
Electromagnetic showers

- High energy e/γ will start a cascade of pair production and bremmstrahlung
 - multiplicative regime until secondaries start falling below E_c

\[50 \text{ GeV/c}\]

\[e^- \text{ in bubble chamber (70\% Ne: 30\% H}_2\) under 3T field\]
Electromagnetic showers

- High energy e/γ will start a cascade of pair production and bremmstrahlung
 - multiplicative regime until secondaries start falling below E_c

showers from two different energy photons in bubble chambers
A toy model for electromagnetic showers

- Start with a pair conversion followed by radiation, … \(E \rightarrow E/2 \rightarrow E/4 \rightarrow \ldots \)

- Scaling properties
 \[
 N(x) = \frac{2^x}{X_0} \quad E(x) = \frac{E_0}{2^x/X_0}
 \]

- Splitting energy reaches \(E_C \) limit, shower starts to be absorbed
 \[
 x_{max} = X_0 \ln_2 \frac{E}{E_c} \quad N_{max} = \frac{E}{E_c}
 \]

not so far from reality
Detailed simulation of an electromagnetic shower

\[t_{\text{max}} \sim \ln \frac{E}{E_c} \pm 0.5 \]

\[t_{95\%} = t_{\text{max}} + 0.08Z + 9.6 \]

30 GeV electron incident on iron

\[\langle 1/E_0 \rangle \frac{dE}{dt} \]

\[t = \text{depth in radiation lengths} \]

Number crossing plane
Spread in the transverse plane

- Particles disperse with respect to initial axis
 - decay openings
 - multiple scattering of charged particles
 - γ in the region of minimal absorption travelling longer

- Define the Moliere radius as

 lateral size containing 90% of the shower energy

\[R_M = \frac{21 \text{ MeV}}{E_c} X_0 \propto \frac{A}{Z} \]
Electromagnetic energy resolutions

\[\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c \]

- **Stochastic term** - fluctuations in the shower development, energy deposited. Enhanced if sampling is made, if Cerenkov radiation starts later, etc.

- **Noise term** - additional degradation at low energy due to electronics noise, pileup, etc.

- **Constant term** - energy leakage, calibration, non-uniformity, radiation damage, …
Some challenges in maintaining energy resolution

- Intercalibration between cells needs to attain 1% level or better
 - use $\eta/\pi^0 \rightarrow \gamma\gamma$, $Z \rightarrow ee$ and ϕ symmetry in minimum bias
- Track radiation damage / recovery of the crystals with a laser
 - inject light into crystals and normalize to PN diodes
A comparison of different e.m. calorimeters

<table>
<thead>
<tr>
<th>Technology (Experiment)</th>
<th>Depth</th>
<th>Energy resolution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI(Tl) (Crystal Ball)</td>
<td>$20X_0$</td>
<td>$2.7% / E^{1/4}$</td>
<td>1983</td>
</tr>
<tr>
<td>Bi$_4$Ge3O${12}$ (BGO) (L3)</td>
<td>$22X_0$</td>
<td>$2% / \sqrt{E} \oplus 0.7%$</td>
<td>1993</td>
</tr>
<tr>
<td>CsI (KTeV)</td>
<td>$27X_0$</td>
<td>$2% / \sqrt{E} \oplus 0.45%$</td>
<td>1996</td>
</tr>
<tr>
<td>CsI(Tl) (BaBar)</td>
<td>$16–18X_0$</td>
<td>$2.3% / E^{1/4} \oplus 1.4%$</td>
<td>1999</td>
</tr>
<tr>
<td>CsI(Tl) (BELLE)</td>
<td>$16X_0$</td>
<td>$1.7%$ for $E_\gamma > 3.5$ GeV</td>
<td>1998</td>
</tr>
<tr>
<td>PbWO$_4$ (PWO) (CMS)</td>
<td>$25X_0$</td>
<td>$3% / \sqrt{E} \oplus 0.5% \oplus 0.2 / E$</td>
<td>1997</td>
</tr>
<tr>
<td>Lead glass (OPAL)</td>
<td>$20.5X_0$</td>
<td>$5% / \sqrt{E}$</td>
<td>1990</td>
</tr>
<tr>
<td>Liquid Kr (NA48)</td>
<td>$27X_0$</td>
<td>$3.2% / \sqrt{E} \oplus 0.42% \oplus 0.09 / E$</td>
<td>1998</td>
</tr>
<tr>
<td>Scintillator/depleted U (ZEUS)</td>
<td>$20–30X_0$</td>
<td>$18% / \sqrt{E}$</td>
<td>1988</td>
</tr>
<tr>
<td>Scintillator/Pb (CDF)</td>
<td>$18X_0$</td>
<td>$13.5% / \sqrt{E}$</td>
<td>1988</td>
</tr>
<tr>
<td>Scintillator fiber/Pb spaghetti (KLOE)</td>
<td>$15X_0$</td>
<td>$5.7% / \sqrt{E} \oplus 0.6%$</td>
<td>1995</td>
</tr>
<tr>
<td>Liquid Ar/Pb (NA31)</td>
<td>$27X_0$</td>
<td>$7.5% / \sqrt{E} \oplus 0.5% \oplus 0.1 / E$</td>
<td>1988</td>
</tr>
<tr>
<td>Liquid Ar/Pb (SLD)</td>
<td>$21X_0$</td>
<td>$8% / \sqrt{E}$</td>
<td>1993</td>
</tr>
<tr>
<td>Liquid Ar/Pb (H1)</td>
<td>$20–30X_0$</td>
<td>$12% / \sqrt{E} \oplus 1%$</td>
<td>1998</td>
</tr>
<tr>
<td>Liquid Ar/depl. U (DØ)</td>
<td>$20.5X_0$</td>
<td>$16% / \sqrt{E} \oplus 0.3% \oplus 0.3 / E$</td>
<td>1993</td>
</tr>
<tr>
<td>Liquid Ar/Pb accordion (ATLAS)</td>
<td>$25X_0$</td>
<td>$10% / \sqrt{E} \oplus 0.4% \oplus 0.3 / E$</td>
<td>1996</td>
</tr>
</tbody>
</table>
Hadronic showers
What is an hadronic shower?

- Charged pions, kaons, protons, neutrons, etc…
- Products of strong interactions will start “mixed” showers
- Requires longer containment than e.m showers
Particle spectra in a proton shower

Showers depend heavily on the incident particle...

Based on simulation. The integral of each curve gives the relative fluence of each particle.
Showers depend heavily on the incident particle and its energy.

Based on simulation.
Showers depend heavily on the incident particle and its energy…

…and fluctuations are non-gaussian!
Hadronic showers are unique

- There are never two alike and need to be analyzed case-by-case
 - hardware compensation: enhance the nuclear energy through materials
 - high granularity calorimeter: enable feature extraction and cluster-by-cluster calibration
 - dual-readout: measure the e.m. energy fraction
 - particle flow: calorimeter identifies particle type, energy used only if no track

e.m. (hadronic) component is shown in red (blue)
Containment of an hadronic shower

- The interaction length quantifies the mean distance before undergoing a nuclear interaction.
- Interaction length (λ) is significantly larger than the radiation length (X_0).

$$\lambda = 35 \ A^{1/3} \text{g/cm}^2$$

e.m. shower

hadronic shower
Characteristics of different materials

![Graph showing characteristics of different materials](image)
Energy reconstruction I

- Need to gather energy spread in time: integrate pulse shape by weighting / fitting
 - calorimeters often need more time to integrate signals with respect to tracking devices
 - hadron showers: slow neutron component can appear significantly delayed in time (>100ns)

...and then there is pileup
Energy reconstruction II

- Need to gather energy spread in space: clustering algorithms are needed
 - algorithm needs to be adapted to the particle, segmentation, material upfront, shower components
 - often several iterations needed, depending on how busy an event is

typical PF algorithms (implemented in Pandora)
Typically hadronic calorimeters exhibit:

- non-linearity, different response to e/\(\gamma\) and hadrons (compensation)
- significantly poorer resolutions compared to e.m. calorimeters
Resolutions and response - CMS HCAL

- Performance is **mainly driven by materials used, segmentation, depth**
 - but also material upfront and readout
 - partially compensated by reconstruction (next slide)
Particle flow algorithm is a reconstruction paradigm
Compensating resolution performance with particle flow

- Particle flow optimizes the usage of the detector
 - most energy ends-up being estimated by tracks and the electromagnetic calorimeter
 - recover linearity and significantly improve in energy resolution
Possible directions in calorimetry: high granularity

- 52 Si sensor layers interleaved with Pb, Cu, stainless steel
 - small cell sizes (~0.5cm2) to cope with 200 pileup and allow feature extraction
 - timing capabilities (~30-50ps) per cell to allow association to primary vertex
Sampling limits energy resolution...

... but can we see deposits in layers as images

⇒ machine-learned PFlow?
Getting data on tape: trigger systems
Recall: the proton-proton cross section

![Graph showing proton-proton cross sections with Tevatron and LHC data points.]

- $10^8 / s$
- $10 / s$
- 1 / day

$15 \text{ nb} \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} = 150 \text{ Hz}$

Reminder: $1 \text{ pb} = 10^{-36} \text{ cm}^2$
Why do we trigger?

- **Data rates at hadron colliders are too high**
 - most events are expected not to be interesting anyway
 - save to tape only relevant physics
 - need a trigger = online selection system which reduces rates by a factor of $\sim 10^5$

<table>
<thead>
<tr>
<th>Collider</th>
<th>Crossing rate (kHz)</th>
<th>Event size (MB)</th>
<th>Trigger rate</th>
<th>Raw data rate (PB/year)</th>
<th>Data rate after trigger (PB/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP</td>
<td>45</td>
<td>0.1</td>
<td>5 Hz</td>
<td>10^2</td>
<td>~ 0.01</td>
</tr>
<tr>
<td>Tevatron</td>
<td>2.5</td>
<td>0.25</td>
<td>50-100 Hz</td>
<td>10^4</td>
<td>0.1</td>
</tr>
<tr>
<td>HERA</td>
<td>10</td>
<td>0.1</td>
<td>5 Hz</td>
<td>10^4</td>
<td>0.01</td>
</tr>
<tr>
<td>LHC</td>
<td>40</td>
<td>1</td>
<td>100-200 Hz</td>
<td>10^5</td>
<td>1</td>
</tr>
</tbody>
</table>
How do we trigger?

Trigger system
Performs real-time selection based on a subset of the data to record

DAQ
Data acquisition system
Collects the data from all the sub-detectors and trigger systems and sends them to mass storage for offline analysis

Mass storage
Readout + decisions = dead-time

- **Signals are random but incoming at an approximate fixed rate**
- Need a busy logic
 - Active while trigger decides whether the event should be kept or not
 - Induces a deadtime in the system
 - System will only accept a fraction of the triggers

$$\nu = f (1 - \nu \tau) \Rightarrow \frac{f}{1 + f \tau} < f$$

- System tends to be inefficient for long readout times
Solution: de-randomize with a buffer

- A fast, intermediate buffer can be introduced
 - Works as a FIFO queue
 (First In First Out)
 - Smooths fluctuations = derandomizes
 - Decouples the slow readout from the fast front-end

- A moderate size buffer is able to retain good efficiency
Trigger system architecture for bunched collisions

- The ADC are synchronous with beam crossings
- Trigger output is stochastic
 - FIFO is needed to derandomize
- **ATLAS LHC Run I architecture**
 - May need to accommodate several levels with increased complexity
 - If first layer latency is smaller than bunch crossing than the combined latency is $v_{L1} \times t_{L2}$

![Diagram of trigger system architecture]
Trigger system architecture for bunched collisions

- The ADC are synchronous with beam crossings
- Trigger output is stochastic
 - FIFO is needed to derandomize
- **ATLAS LHC Run I architecture**
 - May need to accommodate several levels with increased complexity
 - If first layer latency is smaller than bunch crossing than the combined latency is $v_{L1} \times t_{L2}$
- **CMS architecture**
 - Add trigger level between readout and storage
 - CPU Farm used for high level trigger
 - Can access some/all processed data
 - Perform partial/full reconstruction
Be fast = keep it to the point, details come later

- Can only use a sub-set of information
 - Typically energy sums, threshold flags, coarser detector, tracklets
 - Resolutions (energy and position) are coarser by definition
Tracking at L1 (muon case)

Reconstruct segments in each muon chamber
Combine segments to form track
and measure p_T (rough)

Example: CMS Muon L1
Combining information from different sub-detectors

Example: CMS L1 Trigger

1. HF energy
2. HCAL energy
3. ECAL energy
4. RPC hits
5. CSC hits
6. DT hits

- **Regional. Cal. Trigger**
 - Quiet regions & mip bits
 - Pattern Comparator
 - Track finder

- **Global. Cal. Trigger**
 - Global Muon Trigger
 - Global Trigger

- **Global Trigger**

- **TTC System**

- **Accommodate several sources**
 - Busy logic needs to be included
 - Can perform a global OR
 - Or combine certain trigger objects and apply simple topological cuts
 - High level quantities (masses, square roots are expensive! Avoid if possible)
Overall L1 trigger latency

TIME

~3µs

Much of the time spent on signal transmission (here CMS)

Level-1 Accept/Reject
Synchronization delay
Level-1 signal distribution
Global Trigger Processor
Regional Trigger Processors
Trigger Primitive Generation
Synchronization delay
Data transportation to Control Room

Control Room

Experiment

Light cone

SPACE

Detector FrontEnd Digitizer
Particle Time of Flight
Event building

- Parallelize the sum of the parts of the event to build = slicing
- At CMS 8 independent “slices” are used in order to achieve a 100 kHz rate
High level trigger

- After event is built can be shipped to a farm for processing before storage
- Events are independent: easy to parallelize
- Keep out rate at ~300Hz / latency at ~40-50 ms, can afford to use
 - high granularity of the detectors
 - offline reconstruction-like algorithms

ATLAS HLT farm:

LHCb readout switch:
Trigger/DAQ performance in LHC experiments

- **Typical values for LHC run I**
 - May depend on luminosity

- **Notice that the final bandwidth has to be kept**
 - total trigger rate must not exceed allocated bandwidth
 - prescale triggers if needed

<table>
<thead>
<tr>
<th>Collider</th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
<th>ALICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 latency [μs]</td>
<td>2.5</td>
<td>3.2</td>
<td>4</td>
<td>1.2/6/88</td>
</tr>
<tr>
<td>L1 output rate [kHz]</td>
<td>75</td>
<td>100</td>
<td>1000</td>
<td>2</td>
</tr>
<tr>
<td>FE readout bandwidth [GB/s]</td>
<td>120</td>
<td>100</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>Max. average latency at HLT [ms]</td>
<td>40 (EF 1000)</td>
<td>50</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Event building bandwidth [ms]</td>
<td>100</td>
<td></td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>Trigger output rate [Hz]</td>
<td>200</td>
<td>300</td>
<td>2000</td>
<td>50</td>
</tr>
<tr>
<td>Output bandwidth [MB/s]</td>
<td>300</td>
<td>300</td>
<td>100</td>
<td>1200</td>
</tr>
<tr>
<td>Event size [MB]</td>
<td>1.5</td>
<td>1</td>
<td>0.035</td>
<td>Up to 20</td>
</tr>
</tbody>
</table>
Wrap-up
• Hunting for new physics: wide variety of final states vs underlying event/pileup
 • general purpose detectors attempt to cover all possible signatures, rejecting background
 • choice of technology: trade-off between particle identification, resolution and budget

• Particle flow as a paradigm
 • use the best out of the detectors for optimal performance
 • yields a close 1:1 physics reconstruction of the hard process final state

• Magnetic field and tracking play a crucial role and set the base
 • B field is at the heart of the experiment
 • tracking detectors are at the base of the reconstruction
• Calorimeters make the particles collapse to measure its energy, direction time
 • electromagnetic interactions have scaling properties, easy to reconstruct
 • hadronic interactions depend on energy, particle, have distinct properties
 • best performance conjugates careful/clever detector design and reconstruction
 • calorimeters provide most input to the trigger: coarse, fast information

• Trigger systems take decisions based on a preview of (parts of) the event
 • layered structure to allow to store ~1-1.5MB events at a rate of 300-200 Hz
 • first layers usually implemented in hardware, last layer in CPU farms
• W. R. Leo, “Techniques for Nuclear and Particle Physics Experiments”, Springer

• R. Wigmans, “Calorimetry”, Oxford University Press

• Fabjan and Gianotti, “Calorimetry for particle physics”, Rev. Mod. Phys. 75, 1243

Backup
The magnet is the heart of an experiment I

- Goal: measure 1 TeV muons with $\frac{\delta p_T}{p_T}=10\%$ without charge error

 \[\frac{\sigma_{p_T}}{p_T} = \frac{8p_T}{0.3Bl^2} \sigma_s \]

 this implies $\sim 50\mu m$ uncertainty in measuring s

- either use “continuous tracking” or “extreme field”

- From Ampere’s theorem:

 \[\oint \vec{B} \cdot d\vec{s} = \mu_0 I \Rightarrow B = \mu_0 nI. \]

 \[\Rightarrow n = 2168 \ (120) \text{ turns per coil in CMS \ (ATLAS)} \]

- special design needed for superconducting cable in CMS

- size limited by magnetic pressure ($P \approx 6.4 \text{ MPa}$)
The magnet is the heart of an experiment II

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.6T (8 coils, 2x2x30 turns)</td>
<td>4T (1 coil, 2168 turns/m)</td>
</tr>
</tbody>
</table>
| **Challenges** | - spatial/alignment precision over large surface
- 1.5GJ energy stored | - design and winding of the cable
- 2.7GJ energy stored |
| **Drawbacks** | - limited pointing capabilities
- non-trivial B
- additional solenoid (2T) needed for tracking
- space needed | - limits space available for calorimetry
- no photomultipliers for calorimeters
- multiple scattering in iron core
- poor bending at large angles |
Radiation levels: a challenge for detectors and electronics

- Activation of materials, impurities, loss of transparency/response, spurious hits
 ...

- Additional shielding/moderators needed to limit radiation impact in the detectors

Reminder: $1 \text{Gy} = 1 \text{ J/kg} = 100 \text{ rad}$
Position resolution

- Affected by different factors
 - transverse drift of electrons to track
 - strip pitch to diffusion width relationship
 - statistical fluctuations on energy deposition

\[\sigma_x \propto \frac{\Delta p}{S/N} \]

A. Peisert, *Silicon Microstrip Detectors*, DELPHI 92-143 MVX 2, CERN, 1992