

Exotica and Dark Matter searches

Michele Gallinaro

LIP Lisbon May 6, 2018

✓ Introduction

- ✓ Dark matter
 - Exotica searches

2012: A new boson discovery

Standard Model theory of everything?

- Discovery of the Higgs boson marks the triumph of the SM
- However, even with the inclusion of the Higgs boson, SM is an incomplete theory

Tests of the SM

Beyond the Standard Model

The SM answers many of the questions about the structure of matter. But SM is not complete; still many unanswered questions:

- a) Why do we observe matter and almost no antimatter if we believe there is a symmetry between the two in the universe?
- b) What is this "dark matter" that we can't see that has visible gravitational effects in the cosmos?
- c) Are quarks and leptons actually fundamental, or made up of even more fundamental particles?
- d) Why are there three generations of quarks and leptons? What is the explanation for the observed pattern for particle masses?
- e) How does gravity fit into all of this?

Dark matter and energy

- What is that accounts for 96% of the Universe? Nobody knows.
- It is one of the greatest mysteries of Science

What can we look for?

A crowded field. At the LHC we can search for some of these

M. Gallinaro - "Exotica and Dark Matter searches" - May 6, 2019

How?

- Search for new phenomena
- Look for New Physics
- Indirect searches
 - precision measurements, event properties, etc.
- Direct searches
 - resonances, specific final states, model-(in)dependent searches, etc.
- Production and decay rates, event characteristics, advanced tools

Dark Matter

What is it?

- DM does not interact electromagnetically
- DM interacts gravitationally

Visual map

Dark Matter (cont.)

Why is it interesting?

• We do not see it...but we feel it

Dark Matter (cont.)

How do we find DM?

- Need to understand how it interacts with Universe
- Traditionally through a mediator
- Yields at least two new particles

Searching for DM

How do we find it: @underground

• Through a nuclear recoil

How do we find it: @Space

How do we find it: @LHC

Produced it through a mediator

DM at the LHC

CMS/ATLAS experiments not designed for DM searches

DM searches at LHC

How do we find DM at the LHC?DM production gives MET signature

DM searches at LHC

How do we find DM at the LHC?Mono-V: Tag events with a boson

DM searches at LHC

DM searches: backgrounds

- What are the backgrounds?
- $Z \rightarrow vv$
 - -very similar to signal

DM searches: backgrounds (cont.)

How to discriminate signal against the background? • Look for high MET:

DM searches: backgrounds (cont.)

How to discriminate signal against the background? • Can fit the shape and look for signal

DM+Z

DM+jets (j/V/ γ): Motivation

CMS-EXO-16-030

- Search for Z' leptophobic vector
- Strategy: Z'→qq
- Multijet topology with high- p_T jet
- Look at jet substructure
- Search for "bump" in jet mass distribution

Build a V-tagger

Two jets are more collimated at high pT

At low pT jets are "resolved"

-Focus on reconstructing di-jets with mass near W mass

At high pT get one "fat" jet

-Focus on identifying one jet with mass near W mass

Use additional variables to improve discrimination

DM+jets (j/V/ γ): Analysis

CMS-EXO-16-030

- Signal region
 - -p_T>500 GeV
 - $-\tau_{21}^{DDT} < 0.38$
 - -lepton veto
- Soft drop mass m_{SD}: peaks at Z' mass – removes soft wide-angle radiation from jet
- QCD background estimated from sideband regions in data
- τ₂₁^{DDT} n-subjettiness: consistency with 2prong structure
- $\bullet \, \tau_{21}{}^{\text{DDT}} \, \text{defines "pass" or "fail" sidebands}$
 - -Use "transfer function" from fail to pass region

DM+jets (j/V/ γ): Results

CMS-EXO-16-030

- Jet has 2-prong sub-structure
- Identify jet substructure using τ_{21}
- Set limits on light Z' →qq search (most sensitive at <140 GeV)

- Search for low-mass boosted dijet resonances
- Explores uncovered regions
- Limits in Z' mass at low mass

DM+jet/V

CMS-EXO-16-048

28

VBF: H(invisible)

н

arXiv:1809.06682, arXiv:1809.05937

- In the SM, B(H \rightarrow invisible) only 0.1%
- Any significant deviation would indicate BSM
- Signature: Large MET, $\Delta \phi(jj)$, veto ℓ/b -jets
 - C&C and shape fit of m(jj)
- Main bkg: V+jets (95%)
- Tag with forward jets+MET

W CR

Fake enriched

Cross section ~4pb

Events / b-only fit W(Iv)+jets (EW) Small background Dibosons ã' VBF H(125)→inv Set limits: B(H →inv.)<0.37 (0.28) @95%CL Events Superimposed ATLAS Data 13 TeV. 36 fb⁻¹ 10⁻¹ B + S, B_{inv}=1 ₩ B ± syst, 10-2 all postfit 10 10 Stacked bkg. Data-Pred.) Data / Pred W (strong) Z (strong) 🗌 W (EW) Latios Z (EW) ÿ 📕 e fakes 🗌 tī 23123123 123 12 з 2 3123 2 123 - 1 multijet 0.5 1.5 2 2.5 SR eν e⁺v μv μ⁺ν ee μμ Z CR

M. Gallinaro - "Exotica and Dark Matter searches" - May 6, 2019

4.5

m_{ii} [TeV]

Shape: bkg-only fit in CRs+SR

W(lv)+jets (QCD)

з

3.5

Gev

104

10³

CMS

Pred. from

35.9 fb⁻¹ (13 TeV)

Z(vv)+jets (QCD)

Z(vv)+jets (EW)

Top quark

Other bkgs.

aaH(125)→inv

Dark Matter

arXiv:1903.01400, arXiv:1901.0155, CMS-EXO-18-009

- Complementarity to direct/indirect searches
- DM particles:
 - interact via spin-0 & spin-1 mediators
 - are undetected (MET) recoiling against SM particle(s)
- Extensive program of mono-X searches (X=jet, γ, lepton, W, Z, t, tt, bb, H)
- No excess observed
- Interpretation through simplified models (DM and mediator masses, couplings to DM and SM)

Experimental results

- Limits for given couplings between SM and DM interaction
- Competitive limits at low masses wrt other experiments

\Rightarrow Collider results complement direct searches for low masses (<5-10GeV)

Resonant searches

Among the highest dijet mass event recorded: m_{ij} = 8.12 TeV

Resonant Searches

 $p_T = 3.8 \text{ TeV}$

 $p_T = 3.8 \text{ TeV}$

Run: 305777 Event: 4144227629 2016-08-08 08:51:15 CEST

BSM models predict new resonances

- BSMs predict resonances with spin 0,1,2
- Are quarks fundamental particles?
 - Excited quarks in models of compositeness
- Randall-Sundrum (RS) models
 - Spin-2 graviton (KK-particle)
- Heavy-Vector Triplets
 - Spin-1 resonance
 - Models based on strength of vector boson interactions
- Sequential SM
 - Z' and Z with same couplings to fermions
 - Width proportional to the mass

New phenomena in di-jet events

CMS-EXO-17-026, ATLAS-CONF-2019-007

- Searches up to high masses
- QCD predicts a smooth, monotonic decrease in dijet invariant mass
- Search for a localized excess
- No significant excess observed

Searching for dilepton resonances

CMS Experiment at the LHC, CERN Data recorded: 2017-Jun-27 15:39:36.789504 GMT Run / Event / LS: 297599 / 134277310 / 86

Dimuon candidate event: Reconstructed mass of 2.4 TeV

Di-muon events

•Di-muon events: a re-discovery of the SM

Dilepton resonance

arXiv:1803.06292, ATLAS-CONF-2019-001

• Search for dilepton (ee, $\mu\mu$) resonance

M. Gallinaro - "Exotica and Dark Matter searches" - May 6, 2019

m_v [GeV]

Search for diboson resonances

- Heavy BSM resonances (>1TeV) may decay into SM bosons (W,Z, H)
- Several final states
- Experimental challenges
 - -SM bosons decay mostly to quarks
 - Due to large Lorentz boost, decay products merge into single jet
 - -Clustered within a large-cone jet (R=0.8)
- Look into jet substructure
 - Jet "grooming": get rid of soft jet components from UE/pileup, keep constituents from hard scatter
 - Apply filters (mass drop, pruning, trimming)

Diboson resonances

- Many potential final states are possible
 WW/WZ, ZW/ZZ, VV
- Hadronic channels with high sensitivity in high mass region

Jet grooming

arXiv:0802.2470

- Mass drop/filtering
- Identify approx. symmetric sub-jets (with smaller mass than sum)

Jet grooming (cont.)

arXiv:0912.1342, arXiv:0912.0033

- "Trimming"
- Uses kT algorithm to make subjets (subjets with p_T^i/p_T <cut removed)

"Pruning"

Recombine jet constituents, while veto wide-angle/softer constituents

W, Z, H reconstruction

CMS-B2G-17-002

Grooming and jet mass

-Pruning

–soft drop (stable w/pileup, and good jet mass resolution ~10%)

- Vector boson tagging (V→qq)
 - n-subjettiness τ_{21} : how consistent with 2 sub-jets
 - Categorization according to purity: high (<0.35) and high (>0.35)

W, Z, H reconstruction (cont.)

- Higgs boson tagging (H→bbar)
 - Double b-tagging
 - Exploit b-tagging to identify two b-quarks in same jet
 - -Soft-lepton information
 - -Combines tracking and vertexing in MVA

Searching for diboson resonances

- No significant excess in any of the observed final states
- Exclusion limits: HVT models excluded up to 4.1 TeV, Spin-2 RS models up to 2.8 TeV
- Large improvements due to new methods for jet reconstructions and boson tagging

Search for multilepton final states

CMS-EXO-17-006

- Type-III extension to SM
- Search for 3 or more lepton final states
- Pair production of $W/Z/H \rightarrow \Sigma\Sigma$
- Scalar sum of lepton $p_T (L_T)$
- Bin and count (L_T +MET)

 Σ^0

 Σ^+

 W^+

X→VV→qqqq

CMS-B2G-17-001

- All hadronic resonance search with single (qV) or double (VV) V-tag
 - At least 2 back-to-back jets p_T>200GeV
 - Categorization (jet mass, τ_{21})
- Background estimation: "bump hunt" fit data with power law

$X \rightarrow VH \rightarrow qqbb$

CMS-B2G-17-002

All-hadronic search for V→qq and H→bb resonances

-dedicated identification for $H \rightarrow bb$ (b-tagging)

Use categories

-V-jet mass (W or Z), V-jet τ_{21} (high-purity, low-purity), H-jet (tight and loose b-tag)

- Similar topology and background estimate to VV resonance search
- No significant excess found in data

 $X \rightarrow ZV \rightarrow \ell \ell q q$

CMS-B2G-16-022

- Search for resonances in $Z \rightarrow ee/\mu\mu$, $V \rightarrow qq$
- Clean final state (leptons)
 - -Good mass resolution, good efficiency
- τ_{21} categorization (HP, LP)
- Parametrize main bkg (Z+jets), fit to data in sidebands, take shape from MC

 Data compatible with SM-only hypothesis

X→WV→ℓvqq

CMS-B2G-16-020

- Search for a resonance decaying to WV in leptonic channel
- Categorization in τ_{21} and W/Z mass
- Sideband+transfer function for bkg estimate

- Similar sensitivity to $Z(\mathcal{U})V(qq)$ search
- Excluded up to 2 TeV

X→VH→ℓvqq

PLB 768(2017)137

- Search for a resonance decaying to VH in leptonic channels
 - $-Z \rightarrow vv$: transverse mass m_T(VH)
 - $-W \rightarrow \ell_V$: top control region
 - $-Z \rightarrow \mathcal{U}$: high-efficiency dilepton ID
 - -H(bb) b-tagging

Sideband bkg prediction

Heavy vector triplet (Z', W')

• $g_V, g_H (c_V, c_F)$: couplings

Combination of diboson searches

Combination of resonance searches

- Combination of searches for heavy resonances decaying to boson and lepton final states
- Large gain in statistical combination

Resonance searches: Summary

Vector-like quarks

Motivation

- Simplest extension allowed in the quark sector
- Spin 1/2 fermions with vector coupling
- Can mix with SM quarks and modify their couplings to the W/Z/H bosons
- Sizeable mixing with 3rd family, b and t

Properties

- Produced via strong and EWK interactions
- Mainly pair-produced
- Both CC and NC decay modes

VLQ searches

PLB 779(2018)82

- Search for VLQ pair production decaying to WbWb
- Search in the boosted regime
- Can reconstruct the VLQ system

Looking forward: PPS

CERN-LHC-2014-021

- The Precision Proton Spectrometer is a joint CMS and TOTEM project that aims at measuring the surviving scattered protons on both sides of CMS in standard running conditions
- Tracking and timing detectors inside the beam pipe at ~210m from IP5
- Project approved in Dec. 2014 by LHCC
- Data taking started in 2016 (full scope from 2017)

TECHNICAL DESIGN REPORT FOR CMS-TOTEM PRECISION PROTON SPECTROMETER

M. Gallinaro - "Exotica and Dark Matter searches" - May 6, 2019

ERN-LHC-2014-02

PPS physics motivations

Central Exclusive Production

- photon-photon collisions
- gluon-gluon fusion in color singlet, $J^{PC}=0^+$
- High-p_T system in central detector, together with very forward protons in PPS
 - momentum balance between central system and forward protons, provides strong kinematical constraints
 - Mass of central system measured by momentum loss of the two leading protons
- Gauge boson production by photon-photon fusion and anomalous couplings (γγWW, γγZZ, and γγγγ)
- Search for new BSM resonances
- Study of QCD in a new domain

CERNCOU

Theory in motion

gender at CF

Timing detectors

- Use timing to reject pileup background
- Two scenarios studied:
 - -10ps and 30ps time resolution
- Baseline: solid state detectors
- Detector options investigated:
 - -Diamond sensors
 - -Fast silicon sensors (UFSD, HFS)
- Status:
 - -Diamond and LGAD detectors installed

WW production

JHEP 08(2016)119

- Study of process: pp→pWWp
 - Clean process: W in central detector and "nothing" else, intact protons can be detected far away from IP
 - Exclusive production of W pairs via photon exchange: QED process, cross section well known
- Backgrounds:
 - -inclusive WW, $\tau\tau$, exclusive two-photon $\gamma\gamma \rightarrow II$, etc.

• Events:

- -WW pair in central detector, leading protons in PPS
- SM observation of WW events
- Anomalous coupling study
 - -AQGCs predicted in BSM theories
 - -parameters: a_0^W/Λ^2 , a_c^W/Λ^2
- Deviations from SM can be large

p

p

р

p

M. Gallinaro - "Exotica and Dark Matter searches" - May 6, 2019

AQGC expected limits

Exclusive Dileptons

CMS-PPS-17-001

- Study exclusive processes at the EWK scale
- Search for two-photon production of opposite charge lepton pair with forward proton tagging

signal

Background: SD, DD, DY, dibosons, PU

- Signal selected with:
- at least one proton tagged, muons, kinematic selection

Exclusive Dileptons (cont.)

CMS-PPS-17-001

- Correlation between the ξ values in central system vs RP
- $12\mu\mu$, 8ee candidates observed (>5 σ over expected bkg)
- First observation of two-photon production of a lepton pair at this mass range

BSM searches: resonances, etc.

CMS-EXO-15-004, CERN-LHC-2014-021

Summary

- Excellent consistency of SM but SM is incomplete
- Direct and indirect searches for New Physics
 - Collected ~80/fb @13 TeV in 2015-2017
 - $-\sim$ 300/fb to be collected in the next few years (up to LS3)
- Many studies performed with data collected so far
 - New dedicated algorithms being developed
 - Dark Matter, Exotica, signature-based searches
 - Other BSM searches
- Searches provide no hints for BSM yet

