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A day in the life of a PhD student

Why statistics?

The night before, and the morning
Games, weather

Morning: drawing some histograms
Random variables and their properties
Distributions

After coffee break: Measuring a physical quantity
estimators, maximum likelihood

Early afternoon: finding a new particle
Test of hypotheses
CLs
Significance

Tea time: measuring differential distributions
Unfolding

End of the afternoon: work with difficult final states
Machine Learning

Summary: go home before 18h
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Why statistics?
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Statistics is all about answering questions

What is the chance of obtaining a 1 when throwing a six-faced die?

We can throw a dice 100 times, and count how many times we obtain 1

What is the chance of tomorrow being rainy?

We can try to give an answer based on the recent past weather, but we cannot – in general – repeat
tomorrow and count
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Where does statistics live

Theory
Approximations
Free parameters
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Parametric model:
θ1=1
θ2=1

Statistics!

Estimate parameters
Quantify uncertainty in the
parameters estimate
Test the theory!

Experiment

Random fluctuations
Mismeasurements
(detector effects, etc)
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Gaming on the night before, walking to work
in the morning
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What is a “probability”?

Ω: set of all possible elementary (exclusive) events Xi

Exclusivity: the occurrence of one event implies that
none of the others occur
Probability then is any function that satisfies the
Kolmogorov axioms:

P(Xi) ≥ 0, ∀i
P(Xi or Xj) = P(Xi) + P(Xj)∑

Ω P(Xi) = 1

Andrey Kolmogorov.
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Frequentist probability - 1

The most familiar one: based on the possibility of repeating an experiment many times

Consider one experiment in which a series of N events is observed.

n of those N events are of type X

Frequentist probability for any single event to be of type X is the empirical limit of the
frequency ratio:

P(X) = limN→∞
n
N
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Frequentist probability - 2

The experiment must be repeatable in the same conditions
The job of the physicist is making sure that all the relevant conditions in the experiments are
the same, and to correct for the unavoidable changes.

Yes, relevant can be a somehow fuzzy concept

In some cases, you can directly build the full table of frequencies (e.g. dice throws, poker)

What if the experiment cannot be repeated, making the concept of frequency ill-defined?
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Subjective (Bayesian) probability

Based on the concept of degree of belief
P(X) is the subjective degree of belief on X being true

De Finetti: operative definition of subjective probability, based on the concept of coherent bet
We want to determine P(X); we assume that if you bet on X, you win a fixed amount of money if X
happens, and nothing (0) if X does not happen
In such conditions, it is possible to define the probability of X happening as

P(X) :=
The largest amount you are willing to bet

The amount you stand to win
(1)

Coherence is a crucial concept
You can leverage your bets in order to try and not loose too much money in case you are wrong
Your bookie is doing a Dutch book on you if the set of bets guarantees a profit to him
A bet is coherent if a Dutch book is impossible

This expression is mathematically a Kolmogorov probability!
Subjective probability is a property of the observer as much as of the observed system

It depends on the knowledge of the observer prior to the experiment, and is supposed to change
when the observer gains more knowledge (normally thanks to the result of an experiment)

Book Odds Probability Bet Payout
Trump elected Even (1 to 1) 1/(1 + 1) = 0.5 20 20 + 20 = 40
Clinton elected 3 to 1 1/(1 + 3) = 0.25 10 30 + 10 = 40

0.5 + 0.25 = 0.75 30 40
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Conditional probabilities: Bayes theorem

Probabilities can be combined to obtain more complex expressions
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A word of advice about conditional probabilities

Conditional probabilities are not commutative! P(A|B) 6= P(B|A)

Example from Louis Lyons:
A: being female
B: being pregnant

The probability for a female to be pregnant, P(pregnant|female), is roughly 3%

The probability for a pregnant person to be female, P(female|pregnant) is unarguably
>>>>> 3% ,
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A trickier example of conditional probability: the Monty Hall problem

Suppose you’re on a game show, and you’re given the choice of three doors
Behind one door is a car;
behind the others, goats.

You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another
door, say No. 3, which has a goat.

He then says to you, “Do you want to pick door No. 2?”

Is it to your advantage to switch your choice?

The best strategy is to always switch!
The key is the presenter knows where the car is→ he opens different doors

The picture would be different if the presenter opened the door at random

Behind 1 Behind 2 Behind 3 If you keep 1 If you switch to 2 Presenter opens
Car Goat Goat Win car Win goat 2 or 3

Goat Car Goat Win goat Win car 3
Goat Goat Car Win goat Win car 2
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Bayes Theorem and the Law of Total Probability

Bayes Theorem (1763):

P(A|B) :=
P(B|A)P(A)

P(B)
(2)

Valid for any Kolmogorov probability

The theorem can be expressed also by first starting from a subset B of the space

Decomposing the space S in disjoint sets Ai (i.e. ∩AiAj = 0∀i, j), ∪iAi = S an expression can
be given for B as a function of the Ais, the Law of Total Probability:

P(B) =
∑

i

P(B ∩ Ai) =
∑

i

P(B|Ai)P(Ai) (3)

where the second equality holds only for if the Ais are disjoint

Finally, the Bayes Theorem can be rewritten using the decomposition of S as:

P(A|B) :=
P(B|A)P(A)∑
i P(B|Ai)P(Ai)

(4)
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A Diagnosis problem

The Bayes theorem permits to “invert” conditional probabilities, and can be applied to any
Kolmogorov probability, therefore in particular to both frequentist and Bayesian defintions
Let’s consider a mortal disease, and label the possible states of the patients

D: the patient is diseased (sick)
H: the patient is healthy

Let’s imagine we have devised a diagnostic test, characterized by the possible results
+: the test is positive to the disease
-: the test is negative to the disease

Imagine the test is very good in identifying sick people: P(+|D) = 0.99, and that the false
positives percentage is very low: P(+|H) = 0.01

You take the test, and the test is positive. Do you have the disease?

By the Bayes Theorem:

P(D|+) =
P(+|D)P(D)

P(+)
=

P(+|D)P(D)

P(+|D)P(D) + P(+|H)P(H)
(5)

We need the incidence of the disease in the population, P(D)! It turns out P(D) is a very
important to get our answer

P(D) = 0.001 (very rare disease): then P(D|+) = 0.0902, which is fairly small
P(D) = 0.01 (only a factor 10 more likely): then P(D|+) = 0.4977, which is pretty high (and
substantially higher than the previous one)

Vischia Statistics for HEP March 19th, 2018 15 / 106



Bayes Theorem and Subjective Probability

Frequentist and Subjective probabilities differ in the way of interpreting the probabilities that
are written within the Bayes Theorem
Frequentist: probability is associated to sets of data (i.e. to results of repeatable experiments)

Probability is defined as a limit of frequencies
Data are considered random, and each point in the space of theories is treated independently
An hypothesis is either true or false; improperly, its probability can only be either 0 or 1. In general,
P(hypothesis) is not even defined
“This model is preferred” must be read as “I claim that there is a large probability that the data that I
would obtain when sampling from the model are similar to the data I already observed” fix
We can only write about P(data|model)

Bayesian statistics: the definition of probability is extended to the subjective probabilty of
models or hypotheses:

P(H|~X) :=
P(~X|H)π(H)

P(~X)
(6)
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The elements of the Bayes Theorem, in Bayesian Statistics

P(H|~X) :=
P(~X|H)π(H)

P(~X)
(7)

~X, the vector of observed data
P(~X|H), the likelihood function, which fully summarizes the result of the experiment
(experimental resolution)
π(H), the probability of the hypothesis H. It represents the probability we associate to H
before we perform the experiment
P(~X), the probability of the data.

Since we already observed them, it is essentially regarded as a normalization factor
Summing the probability of the data for all exclusive hypotheses (by the Law of Total Probability),∑

i P(~X|Hi) = 1 (assuming that at least one Hi is true).
Usually, the denominator is omitted and the equality sign is replaced by a proporcionality sign

P(H|~X) ∝ P(~X|H)π(H) (8)

P(H|~X), the posterior probability; it is obtained as a result of an experiment
If we parameterize H with a (continuous or discrete) parameter, we can use the parameter as
a proxy for H, and instead of writing P(H(θ)) we write P(θ) and

P(θ|~X) ∝ P(~X|θ)π(θ) (9)

The simplified expression is usually used, unless when the normalization is necessary
“Where is the value of θ such that θtrue < θc with 95% probability?”; integration is needed and the
normalization is necessary
“Which is the mode of the distribution?”; this is independent of the normalization, and it is therefore
not necessary to use the normalized expression
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Choosing a prior in Bayesian statistics; in theory... 1/

There is no golden rule for choosing a prior
Objective Bayesian school: it is necessary to write a golden rule to choose a prior

Usually based on an invariance principle

Consider a theory parameterized with a parameter, e.g. the ratio of vacuum expectation
values v in a quantum field theory, β := v1

v2

Before any experiment, we are Jon Snow about the parameter β: we know nothing
We have to choose a very broad prior, or better uniform, in β

Now we interact with a theoretical physicist, who might have built her theory by using as a
parameter of the model the tanged of the ratio, tanβ

In a natural way, she will express her pre-experiment ignorance using an uniform prior in tanβ.
This prior is not constant in β!!!
In general, there is no uniquely-defined prior expressing complete ignorance or ambivalence in both
parameters (β and tanβ)

We can build a prior invariant for transformations of the parameter, but this means we have to
postulate an invariance principle

The prior already deviates from our degree of belief about the parameter (“I know nothing”)
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Choosing a prior in Bayesian statistics; in theory... 2/

Two ways of solving the situation
Objective Bayes: use a formal rule dictated by an invariance principle
Subjective Bayes: use something like elicitation of expert opinion

Ask an expert her opinion about each value of θ, and express the answer as a curve
Repeat this with many experts
100 years later check the result of the experiments, thus verifying how many experts were right, and re-calibrate
your prior
This corresponds to a IF-THEN proposition: “IF the prior is π(H), THEN you have to update it afterwards, taking
into account the result of the experiment”

Central concept: update your priors after each experimient
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Choosing a prior in Bayesian statistics; in practice... 1/

In particle physics, the typical application of Bayesian statistics is to put an upper limit on a
parameter θ

Find a value θc such that P(θtrue < θc) = 95%

Typically θ represents the cross section of a physics process, and is proporcional to a variable
with a Poisson p.d.f.

An uniform prior can be chosen, eventually restricted to θ ≥ 0 to account for the physical
range of θ
We can write priors as a function of other variables, but in general those variables will be
linked to the cross section by some analytic transformation

A prior that is uniforme in a variable is not in general uniform in a transformed variable; a uniform prior
in the cross section implies a non-uniform prior (not even linear) on the mass of the sought particle

In HEP, usually the prior is chosen uniform in the variable with the variable which is
proporcional to the cross section of the process sought
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Choosing a prior in Bayesian statistics; in practice... 2/

Uniform priors must make sense
Uniform prior across its entire dominion: not very realistic
It corresponds to claimng that P(1 < θ ≤ 2) is the same as P(1041 < θ ≤ 1041 + 1)
It’s irrational to claim that a prior can cover uniformly forty orders of magnitude
We must have a general idea of “meaningful” values for θ, and must not accept results forty orders of
magnitude above such meaningful values

A uniform prior often implies that its integral is infinity (e.g. for a cross section, the dominion
being [0,∞]

Achieving a proper normalization of the posterior probability would be a nightmare

In practice, use a very broad prior that falls to zero very slowly but that is practically zero
where the parameter cannot meaningfully lie

This does not guarntee that it integrates to 1—it depends on the speed of convergence to zero
Improper prior
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Choosing a prior in Bayesian statistics; in practice... 3/
Associating parametric priors to intervals in the parameter space corresponds to considering
sets of theories

This is because to each value of a parameter corresponds a different theory
In practical situations, note (Eq. 9) posterior probability is always proportional to the product
of the prior and the likelihood

The prior must not necessarily be uniform across the whole dominion
It should be uniform only in the region in which the likelihood is different from zero

If the prior π(θ) is very broad, the product can sometimes be approximated with the
likelihood, P(~X|θ)π(H) ∼ P(~X|θ)

The likelihood function is narrower when the data are more precise, which in HEP often translates to
the limit N →∞
In this limit, the likelihood is always dominant in the product
The posterior is indipendent of the prior!
The posteriors corresponding to different priors must coincide, in this limit

Plot from Ben Shaver at towardsdatascience.com
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Short summary on bayesian vs. frequentist

Frequentists are restricted to statements related to
P(data|theory) (kind of deductive reasoning)
The data is considered random
Each point in the “theory” phase space is treated independently (no notion of probability in the
“theory” space)
Repeatable experiments

Bayesians can address questions in the form
P(theory|data) ∝ P(data|theory)× P(theory) (it is intuitively what we normally would like to know)
It requires a prior on the theory
Huge battle on subjectiveness in the choice of the prior goes here - see §7.5 of James’ book
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Morning: drawing some histograms
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Random Variables

Random variable: a numeric label for each element in the space of data (in frequentist
statistics) or in the space of the hypotheses (in Bayesian statistics)
In Physics, usually we assume that Nature can be described by continuous variables

The discreteness of our distributions would arise from scanning the variable in a discrete way
Experimental limitations in the act of measuring an intrinsically continuous variable)

Instead of point probabilities we’ll work with probabilities defined in intervals, normalized w.r.t.
the interval:

f (X) := lim
∆X→0

P(X)

∆X
(10)

Dimensionally, they are densities and they are called probability density functions (p.d.f. s)

Inverting the expression, P(X) =
∫

f (X)dX and we can compute the probability of an interval
as a definite interval

P(a < X < b) :=

∫ b

a
f (X)dX (11)
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p.d.f. for many variables

Extend the concept of p.d.f. to an arbitrary number of variables; the joint p.d.f. f (X, Y, ...)

If we are interested in the p.d.f. of just one of the variables the joint p.d.f. depends upon, we
can compute by integration the marginal p.d.f.

fX(X) :=

∫
f (X, Y)dY (12)

Sometimes it’s interesting to express the joint p.d.f. as a function of one variable, for a
particular fixed value of the others: this is the conditional p.d.f. :

f (X|Y) :=
f (X, Y)

fY(Y)
(13)
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Dispersion and distributions

Repeated experiments usually don’t yield the exact same result even if the physical quantity
is expected to be exactly the same

Random changes occur because of the imperfect experimental conditions and techniques
They are connected to the concept of dispersion around a central value

When repeating an experiment, we can count how many times we obtain a result contained in
various intervals (e.g. how often 1.0 ≤ L < 1.1, how often 1.1 ≤ L < 1.2, etc)

An histogram can be a natural way of recording these frequencies
The concept of dispersion of measurements is therefore related to that of dispersion of a distribution

In a distribution we are usually interested in finding a “central” value and how much the
various results are dispersed around it
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Sources of uncertainty (errors?)

Two fundamentally different kinds of uncertainties
Error: the deviation of a measured quantity from the true value (bias)
Uncertainty: the spread of the sampling distribution of the measurements

Random (statistical) uncertainties
Inability of any measuring device (and scientist) to give infinitely accurate answers
Even for integral quantities (e.g. counting experiments), fluctuations occur in observations on a small
sample drawn from a large population
They manifest as spread of answers scattered around the true value

Systematic uncertainties
They result in measurements that are simply wrong, for some reason
They manifest usually as offset from the true value, even if all the individual results can be consistent
with each other
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Expected values of a random variable

We define the expected value and mathematic expectation

E[X] :=

∫
Ω

Xf (X)dX (14)

In general, for each of the following formulas (reported for continuous variables) there is a
corresponding one for discrete variables, e.g.

E[X] :=
∑

i

XiP(Xi) (15)
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Generalizing expected values to functions of random variables

Extend the concept of expected value to a generic function g(X) of a random variable

E[g] :=

∫
Ω

g(X)f (X)dX (16)

The previous expression Eq. 14 is a special case of Eq. 16 when g(X) = X

The mean of X is:
µ := E[X] (17)

The variance of X is:
V(X) := E[(X − µ)2] = E[X2]− µ2 (18)

Mean and variance will be our way of estimating a “central” value of a distribution and of the
dispersion of the values around it
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Let’s make it funnier: more variables!
Let our function g(X) be a function of more variables, ~X = (X1,X2, ...,Xn) (with p.d.f. f (~X))

Expected value: E(g(~X)) =
∫

g(~X)f (~X)dX1dX2...dXn = µg

Variance: V[g] = E
[
(g− µg)

2] =
∫

(g(~X)− µg)
2f (~X)dX1dX2...dXn = σ2

g

Covariance: of two variables X, Y:
VXY = E

[
(X − µX)(Y − µY)

]
= E[XY]− µXµY =

∫
XYf (X, Y)dXdY − µXµY

It is also called “error matrix”, and sometimes denoted cov[X, Y]

It is symmetric by construction: VXY = VYX , and VXX = σ2
X

To have a dimensionless parameter: correlation coefficient ρXY =
VXY
σXσY

VXY is the expectation for the product of
deviations of X and Y from their means

If having X > µX enhances P(Y > µY), and
having X < µX enhances P(Y < µY), then
VXY > 0: positive correlation!
ρXY is related to the angle in a linear
regression of X on Y (or viceversa)

It does not capture non-linear correlations
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Mutual information: take it to the next level
Covariance and correlation coefficients act taking into account only linear dependences
Mutual Information is a general notion of correlation, measuring the information that two
variables X and Y share

I(X; Y) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p1(x)p2(y)

)
Symmetric: I(X; Y) = I(Y; X)
I(X; Y) = 0 if and only if X and Y are totally independent

X and Y can be uncorrelated but not independent; mutual information captures this!
Related to entropy

I(X; Y) = H(X)− H(X|Y)

= H(Y)− H(Y|X)

= H(X) + H(Y)− H(X, Y)
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The Simpson paradox: correlation is not causation

Correlation alone can lead to nonsense conclusions
If we know the gender, then prescribe the drug
If we don’t know the gender, then don’t prescribe the
drug

Imagine we know that estrogen has a negative effect
on recovery

Then women less likely to recovery than men
Table shows women are significantly more likely to take
the drug

Here we should consult the separate data, in order
not to mix effects
Same table, different labels; must consider the
combined data

Lowering blood pressure is actually part of the
mechanism of the drug effect

Same effect in continuous data (cholesterol vs age)

Bayesian causal networks

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)

Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

No drug Drug
Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)
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Distributions... or not?

HEP uses histograms mostly historically: counting experiments
Statistics and Machine Learning communities typically use densities

Intuitive relationship with the underlying p.d.f.
Kernel density estimates: binning assumption→ bandwidth assumption
Less focused on individual bin content, more focused on the overall shape
More general notion (no stress about the limited bin content in tails)

In HEP, if your events are then used “as counting experiment” it’s more useful the histogram
But for some applications (e.g. Machine Learning) even in HEP please consider using density
estimates

Plots from TheGlowingPython and TowardsDataScience

Vischia Statistics for HEP March 19th, 2018 34 / 106



The Binomial distribution

Binomial
Discrete variable: r, positive integer ≤ N
Parameters:

N, positive integer
p, 0 ≤ p ≤ 1

Probability function:
P(r) =

(N
r

)
pr(1− p)N−r , r = 0, 1, ...,N

E(r) = Np, V(r) = Np(1− p)
Usage: probability of finding exactly r
successes in N trials. The distribution of the
number of events in a single bin of a
histogram is binomial (if the bin contents are
independent)
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p=0.3, N=20
p=0.7, N=20
p=0.5, N=40

Example: which is the probability of obtaining 3 times the number 6 when throwing a 6-faces
die 12 times?

N = 12, r = 3, p = 1
6

P(3) =
(12

3

)( 1
6

)3
(1− 1

6 )12−3 = 12!
3!9!

1
63

(
5
6

)9
= 0.1974
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The Poisson distribution

Poisson
Discrete variable: r, positive integer
Parameter: µ, positive real number

Probability function: P(r) = µre−µ
r!

E(r) = µ, V(r) = µ
Usage: probability of finding exactly r events
in a given amount of time, if events occur at a
constant rate.

Example: is it convenient to put an
advertising panel along a road?

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

Poisson p.d.f.

x
P

ro
ba

bi
lit

y 
de

ns
ity

●

●

●

●

● ●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ●

µ=1
µ=5
µ=15

Probability that at least one car passes through the road on each day, knowing on average 3
cars pass each day

P(X > 0) = 1− P(0), and use Poisson p.d.f.

P(0) =
30e−3

0!
= 0.049787

P(X > 0) = 1− 0.049787 = 0.95021.

Now suppose the road serves only an industry, so it is unused during the weekend; Which is
the probability that in any given day exactly one car passes by the road?

Navg per dia =
3
5

= 0.6

P(X) =
0.61e−0.6

1!
= 0.32929
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The Gaussian distribution

Gaussian or Normal distribution
Variable: X, real number
Parameters:

µ, real number
σ, positive real number

Probability function:

f (X) = N(µ, σ2) = 1
σ
√

2π
exp
[
− 1

2
(X−µ)2

σ2

]
E(X) = µ, V(X) = σ2

Usage: describes the distribution of
independent random variables. It is also the
high-something limit for many other
distributions
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The χ2 distribution

Parameter: integer N > 0 degrees of
freedom

Continuous variable X ∈ R
p.d.f., expected value, variance

f (X) =
1
2

( X
2

) N
2 −1e−

X
2

Γ
(N

2

)
E[r] = N

V(r) = 2N

It describes the distribution of the sum of the
squares of a random variable,

∑N
i=1 X2

i 0 5 10 15
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χ2 p.d.f.

x

P
ro

ba
bi

lit
y 

de
ns

ity

NDOF=1
NDOF=2
NDOF=5
NDOF=9

Reminder: Γ() := N!
r!(N−r)!
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The χ2 distribution: why degrees of freedom?
Sample randomly from a Gaussian p.d.f., obtaining X1 y X2
Q = X2

1 + X2
2 (or in general Q =

∑N
i=1 X2

i ) is itself a random variable
What is P(Q ≥ 6)? Just integrate the χ2(N = 2) distribution from 6 to∞

Depends only on N!
If we sample 12 times from a Gaussian and compute Q =

∑12
i=1 X2

i , then Q ∼ χ2(N = 12)

Theorem: if Z1, ..., ZN is a sequence of normal random variables, the sum V =
∑N

i=1 Z2
i is

distributed as a χ2(N)
The sum of squares is closely linked to the variance E[(X − µ)2] = E[X2]− µ2 from Eq. 18

The χ2 distribution is useful for goodness-of-fit tests that check how much two distributions
diverge point-by-point
It is also the large-sample limit of many distributions (useful to simplify them to a single
parameter)
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The χ2 distribution: goodness-of-fit tests 1/
Consider a set of M measurements {(Xi, Yi)}

Suppose Yi are affected by a random error representable by a gaussian with variance σi

Consider a function g(X) with predictive capacity, i.e. such that for each i we have g(Xi) ∼ Yi
Pearson’s χ2 function related to the difference between the prediction and the experimental
measurement in each point

χ2
P :=

M∑
i=1

[
Yi − g(Xi)

σi

]2

(19)

Neyman’s χ2 is a similar expression under some assumptions
If the gaussian error on the measurements is constant, it can be factorized
If Yi represent event counts Yi = ni, then the errors can be approximated with σi ∝

√
ni

χ2
N :=

M∑
i=1

(
ni − g(Xi)

)2

ni
(20)
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The χ2 distribution: goodness-of-fit tests 2/
If g(Xi) ∼ Yi (i.e. g(X) reasonably predicts the data), then each term of the sum is
approximately 1
Consider a function of χ2

N,P and of the number of measurements M
E[f (χ2

N,P,M)] = M
The function is analytically a χ2:

f (χ2
,M) =

2−
M
2

Γ
(

N
2

)χN−2e−
χ2
2 (21)

The cumulative of f is

1− cum(f ) = P(χ
2
> χ

2
obs|g(x) is the correct model) (22)

Comparing χ2 with the number of degrees of freedom M, we therefore have a criterion to test
for goodness-of-fit

For a given M, the p.d.f. is known (χ2(M)) and the observed value can be computed and compared
with it
Null hypothesis: there is no difference between prediction and observation (i.e. g fits well the data)
Alternative hypothesis: there is a significant difference between prediction and observation
Under the null, the sum of squares is distributed as a χ2(M)

p-values can be calculated by integration of the χ2 distribution
χ2

M
∼ 1⇒ g(X) approximates well the data

χ2

M
>> 1⇒ poor model (increases χ2), or statistically improbable fluctuation

χ2

M
<< 1⇒ overestimated σi, or fraudulent data, or statistically improbable fluctuation

(23)
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The χ2 distribution: goodness-of-fit tests 3/

χ2(M) tends to a Normal distribution for M →∞
Slow convergence
It is generally not a good idea to substitute a χ2 distribution with a Gaussian

The goodness of fit seen so far is valid only if the model (the function g(X)) is fixed

Sometimes the model has k free parameters that were not given and that have been fit to the
data
Then the observed value of χ2 must be compared with χ2(N′), with N′ = N − k degrees of
freedom

N′ = N − k are called reduced degrees of freedom
This however works only if the model is linear in the parameters
If the model is not linear in the parameters, when comparing χ2

obs with χ2(N − k) then the p-values
will be deceptively small!

Variant of the χ2 for small datasets: the G-test
g = 2

∑
Oijln(Oij/Eij)

It responds better when the number of events is low (Petersen 2012)
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Some relationships among distributions

It is often convenient to know the asymptotic properties of the various distributions
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After the coffee break: measuring a physical
quantity
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Information, the Fisher way

The information of a set of observations should increase with the number of observations
Double the data should result in double the information if the data are independent

Information should be conditional on what we want to learn from the experiment
Data which are irrelevant to our hypothesis should carry zero information relative to our hypothesis

Information should be related to precision
The greatest the information carried by the data, the better the precision of our result
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Likelihood and Fisher Information

The narrowness of the likelihood can be estimated by looking at its curvature

The curvature is the second derivative with respect to the parameter of interest

A very narrow (peaked) likelihood is characterized by a very large and positive − ∂
2lnL
∂θ2

The second derivative of the likelihood is linked to the Fisher Information

I(θ) = −E

[
∂2lnL
∂θ2

]
= E

[(
∂lnL
∂θ

)2]
(24)

A very narrow likelihood will provide much information about θtrue

The posterior probability will be more localized than the prior (in the regimen in which the likelihood
function dominates the product L(~x; ~θ)× π)
The Fisher Information will be large

A very broad likelihood will not carry much information, and in fact the computed Fisher
Information will turn out to be small
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Fisher Information and Jeffreys priors
When changing variable, the change of parameterization must not result in a change of the
information

The information is a property of the data only, through the likelihood—that summarizes them
completely (likelihood principle)

Search for a parametrization θ′(θ) in which the Fisher Information is constant
Compute the prior as a function of the new variable

π(θ) = π(θ′)
∣∣∣ dθ′

dθ

∣∣∣ ∝
√√√√E

[(
∂lnN
∂θ′

)2]∣∣∣∣∣∂θ′∂θ
∣∣∣∣∣

=

√√√√E

[(
∂lnL
∂θ′

∂θ′

∂θ

)2]

=

√√√√E

[(
∂lnL
∂θ

)2]
=
√

I(θ)

(25)

For any θ, π(θ) =
√

I(θ); with this choice, the information is constant under changes of
variable
Such priors are called Jeffreys priors, and assume different forms depending on the type of
parametrization

Location parameters: uniform prior
Scale parameters: prior ∝ 1

θ

Poisson processes: prior ∝ 1√
θ
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Sufficient statistic and data reduction

A test statistic is a function of the data (a quantity derived from the data sample)
A statistic T = T(X) is sufficient for θ if the density function f (X|T) is independent of θ

If T is a sufficient statistic for θ, then also any strictly monotonic g(T) is sufficient for θ

The statistic T carries as much information about θ as the original data X
No other function can give any further information about θ
Same inference from data X with model E and from sufficient statistic T(X) with model E′

Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) x̂ = 1+2+3+4+5
5 = 3

Imagine we don’t have the data; we only know that the sample mean is 3
Since the sample mean is 3, we also estimate the population mean to be 3
Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our
estimate for the population mean

Data can be reduced; we only need to store a sufficient statistic
Binomial test in coin toss
Record heads and tails, with their order: HTTHHHTHHTTTHTHTH
Recording only the number of heads (no tails, no order) gives exactly the same information
Storage needs are reduced

Vischia Statistics for HEP March 19th, 2018 48 / 106



The Likelihood Principle

Common enunciation: given a set of observed data~x, the likelihood function L(~x; θ) contains
all the information relevant to the measurement of θ

The likelihood function is seen as a function of θ, for a fixed set (a particular realization) of observed
data~x
As we have seen, the likelihood is used to define the information contained in a sample

Bayesian statistics normally complies, frequentist statistics usually does not, because a
frequentist has to consider the hypothetical set of data that might have been obtained.

This on one side implies that a frequentist always needs multiple sets of observations
(simulations of the day of tomorrow, or counting the past frequency of la abuela con dolor a la
espalda)

On the other side a Bayesian would say “Probably tomorrow will rain”, a frequentist “the
sentence -tomorrow it will rain- is probably true”
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Estimators

Set~x = (x1, ..., xN) of N statistically independent observations xi, sampled from a p.d.f. f (x).

Mean and width of f (x) (or some parameter of it: f (x; ~θ), with ~θ = (θ1, ..., θM) unknown)
In case of a linear p.d.f., the vector of parameters would be ~θ = (intercept, slope)

We call estimator a function of the observed data~x which returns numerical values ~̂θ for the
vector ~θ.

~̂θ is (asymptotically) consistent if it converges to ~θtrue
for large N:

lim
N→∞

~̂θ = ~θtrue

~̂θ is unbiased if its bias is zero, ~b = 0

Bias of ~̂θ: ~b := E[~̂θ]− ~θtrue

If bias is known, can redefine ~̂θ′ = ~̂θ −~b, resulting in
~b′ = 0.

~̂θ is efficient if its variance V[~̂θ] is the smallest possible Plot from James, 2nd ed.

An estimator is robust when it is insensitive to small deviations from the underlying
distribution (p.d.f.) assumed (ideally, one would want distribution-free estimates, without
assumptions on the underlying p.d.f.)



The Maximum Likelihood Method 1/
Let~x = (x1, ..., xN) be a set of N statistically independent observations xi, sampled from a
p.d.f. f (x; ~θ) depending on a vector of parameters
Under independence of the observations, the likelihood function factorizes to the individual
p.d.f. s

L(~x; ~θ) =
N∏

i=1

f (xi, ~θ) (26)

The maximum-likelihood estimator is the ~θML which maximizes the joint likelihood

~θML := argmaxθ
(

L(~x, ~θ)
)

(27)

The maximum must be global
Numerically, it’s usually easier to minimize

− lnL(~x; ~θ) = −
N∑

i=1

lnf (xi, ~θ) (28)

Easier working with sums than with products
Easier minimizing than maximizing

If the minimum is far from the range of permitted values for ~θ, then the minimization can be
performed by finding solutions to

−
lnL(~x; ~θ)

∂θj
= 0 (29)

It is assumed that the p.d.f. s are correctly normalized, i.e. that
∫

f (~x; ~θ)dx = 1 (→ integral does not
depend on ~θ)
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The Maximum Likelihood Method 2/

Solutions to the likelihood minimization are found via numerical methods such as MINOS
Fred James’ Minuit: https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html

~θML is an estimator→ let’s study its properties!
1 Consistent: limN→∞ ~θML = ~θtrue;
2 Unbiased: only asymptotically. ~b ∝ 1

N , so~b = 0 only for N →∞;
3 Efficient: V[~θML] = 1

I(θ)

4 Invariant: for change of variables ψ = g(θ); ψ̂ML = g(~θML)

~θML is only asymptotically unbiased, and therefore it does not always represent the best
trade-off between bias and variance

Remember that in frequentist statistics L(~x; ~θ) is not a p.d.f. . In Bayesian statistics, the
posterior probability is a p.d.f.:

P(~θ|~x) =
L(~x|~θ)π(~θ)∫
L(~x|~θ)π(~θ)d~θ

(30)

Note that if the prior is uniform, π(~θ) = k, then the MLE is also the maximum of the posterior
probability, ~θML = maxP(~θ|~x).
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Nuclear Decay with Maximum Likelihood Method 1/

A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

f (t; τ) =
1
τ

e−
t
τ

E[f ] = τ

V[f ] = τ 2

(31)

Sampling N independent measurements ti from the same p.d.f. results in a set of
measurements identically distributed

The joint p.d.f. can be factorized

f (t1, ...tN ; τ) =
∏

i

f (ti; τ) (32)

For a particular set of N measurements ti, the p.d.f. can be written as a function of τ only,
L(τ) := f (ti; τ)

The logarithm of the likelihood, lnL(τ) =
∑(

ln 1
τ
− ti
τ

)
, can be maximized analytically

∂lnL(τ)

∂τ
=
∑

i

(
−

1
τ

+
ti
τ 2

)
≡ 0 (33)
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Nuclear Decay with Maximum Likelihood Method 1/

The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti (34)

It’s the simple arithmetical mean of the individual measurements!

The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0 (35)

The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]

=
1

N2

∑
i

V[ti] =
τ 2

N
(36)

The MLE is not the only estimator we can think of
Consistente Insesgado Eficiente

τ̂ = τ̂ML = t1+...+tN
N 3 3 3

τ̂ = t1+...+tN
N−1 3 7 7

τ̂ = ti 7 3 7

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.
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Bias-variance tradeoff and optimal variance 1/

We usually want to optimize both bias ~b and variance V[~̂θ]

While we can optimize each one separately, optimizing them simultaneously leads to none
being optimally optimized, in genreal

Optimal solutions in two dimensions are often suboptimal with respect to the optimization of just one
of the two properties

The variance is linked to the width of the likelihood function, which naturally leads to linking it
to the curvature of L(~x; ~θ) near the maximum

However, the curvature of L(~x; ~θ) near the maximum is linked to the Fisher information, as we
have seen

Information is therefore a limiting factor for the variance (no data set contains infinite
information, variance cannot collapse to zero)

Variance of an estimator satisfies the Rao-Cramér-Frechet (RCF) bound

V[θ̂] ≥
1

θ̂
(37)
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Information Inequality – 1

Rao-Cramer-Frechet (RCF) bound

V[θ̂] ≥ (1+∂b/∂θ)2

−E
[
∂2lnL/∂θ2

]
In multiple dimensions, this is linked with the Fisher Information Matrix:
Iij = E

[
∂2lnL/∂θi∂θj

]
Approximations

Neglect the bias (b = 0)
Inequality is an approximate equality (true for large data samples)

V[θ̂] ' 1
−E
[
∂2lnL/∂θ2

]
Estimate of the variance of the estimate of the parameter!

V̂[θ̂] ' 1
−E
[
∂2lnL/∂θ2

]
|
θ= ˆtheta
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Bias-variance tradeoff and optimal variance 2/

For multidimensional parmaeters, we can build the information matrix with elements:

Ijk(~θ) = −E
[ N∑

i

∂2lnf (xi; ~θ)

∂θk∂θk

]
= N

∫
1
f
∂f
∂θj

∂f
∂θk

dx

(38)

(the last equality is due to the integration interval not being dependent on ~θ)
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Estimating variance non-analytically

We have calculated the variance of the MLE in the simple case of the nuclear decay

Analytic calculation of the variance is not always possible

Write the variance approximately as:

V[θ̂] ≥

(
1 + ∂b

∂θ

)2

−E
[
∂2lnL
∂θ2

] (39)

This expression is valid for any estimator, but if applied to the MLE then we can note ~θML is
efficient and asymptotically unbiased

Therefore, when N →∞ then b = 0 and the variance approximate to the RCF bound, and ≥
becomes ':

V[~θML] '
1

−E
[
∂2lnL
∂θ2

]∣∣∣
θ=~θML

(40)

Vischia Statistics for HEP March 19th, 2018 58 / 106



How to extract an interval from the likelihood function 1/

For a Gaussian p.d.f., f (x; ~θ) = N(µ, σ), the likelihood can be written as:

L(~x; ~θ) = ln
[
−

(~x− ~θ)2

2σ2

]
(41)

Moving away from the maximum of L(~x; ~θ) by one unit of σ, the likelihood assumes the value
1
2 , and the area enclosed in [~θ − σ, ~θ + σ] will be—because of the properties of the Normal
distribution—equal to 68.3%.
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How to extract an interval from the likelihood function 2/
We can therefore write

P
(

(~x− ~θ)2 ≤ σ)
)

= 68.3%

P(−σ ≤ ~x− ~θ ≤ σ) = 68.3%

P(~x− σ ≤ ~θ ≤ ~x + σ) = 68.3%

(42)

Taking into account that it is important to keep in mind that probability is a property of sets, in
frequentist statistics

Confidence interval: interval with a fixed probability content
This process for computing a confidence interval is exact for a Gaussian p.d.f.

Pathological cases reviewed later on (confidence belts and Neyman construction)
Practical prescription:

Point estimate by computing the Maximum Likelihood Estimate
Confidence interval by taking the range delimited by the crossings of the likelihood function with 1

2 (for
68.3% probability content, or 2 for 95% probability content—2σ, etc)

Plot from James, 2nd ed.Vischia Statistics for HEP March 19th, 2018 60 / 106



How to extract an interval from the likelihood function 3/
MLE is invariant for monotonic transformations of θ

This applies not only to the maximum of the likelihood, but to all relative values
The likelihood ratio is therefore an invariant quantity (we’ll use it for hypothesis testing)
Can transform the likelihood such that log(L(~x; ~θ)) is parabolic, but not necessary (MINOS/Minuit)

When the p.d.f. is not normal, either assume it is, and use symmetric intervals from Gaussian
tails...

This yields symmetric approximate intervals
The approximation is often good even for small amounts of data

...or use asymmetric intervals by just looking at the crossing of the log(L(~x; ~θ)) values
Naturally-arising asymmetrical intervals
No gaussian approximation

In any case (even asymmetric intervals) still based on asymptotic expansion
Method is exact only to O( 1

N )

Plot from James, 2nd ed.
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And in many dimensions...

Construct logL contours and determine confidence intervals by MINOS
Elliptical contours correspond to gaussian Likelihoods

The closer to MLE, the more elliptical the contours, even in non-linear problems
All models are linear in a sufficiently small region

Nonlinear regions not problematic (no parabolic transformation of logL needed)
MINOS accounts for non-linearities by following the likelihood contour

Confidence intervals for each
parameter

max
θj,j6=i

logL(θ) = logL(θ̂)− λ

λ =
Z2

1−β
2

λ = 1/2 for β = 0.683 (“1σ”)
λ = 2 for β = 0.955 (“2σ”)

Plot from James, 2nd ed.
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What if I have systematic uncertainties?
Parametrize them into the likelihood function; conventional separation of parameters in two
classes

the Parameter(s) of Interest (POI), often representing σ/σSM and denoted as µ (signal strength)
the parameters representing uncertainties, nuisance parameters θ

H0: µ = 0 (Standard Model only, no Higgs)
H1: µ = 1 (Standard Model + Standard Model Higgs)
Find the maximum likelihood estimates (MLEs) µ̂, θ̂

Find the conditional MLE ˆ̂
θ(µ), i.e. the value of θ maximizing the likelihood function for each

fixed value of µ

Write the test statistics as λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂,θ̂)

Independent on the nuisance parameters (profiled, i.e. their MLE has been taken as a function of
each value of µ)
Can even freeze them one by one to extract their contribution to the total uncertainty

Asymptotically, λ(µ) ∼ χ2 (Wilks Theorem, under some regularity conditions)
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How to extract an interval from the likelihood function 4/

Theorem: for any p.d.f. f (x|~θ), in the large numbers limit N →∞, the likelihood can always
be approximated with a gaussian:

L(~x; ~θ) ∝N→∞ e−
1
2 (~θ−~θML)T H(~θ−~θML) (43)

where H is the information matrix I(~θ).

Under these conditions, V[~θML]→ 1
I(~θML)

, and the intervals can be computed as:

∆lnL := lnL(θ′)− lnLmax = −
1
2

(44)

The resulting interval has in general a larger probability content than the one for a gaussian
p.d.f., but the approximation grows better when N increases

The interval overcovers the true value ~θtrue
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How to extract an interval from the likelihood function 5/

~θtrue is therefore stimated as θ̂ = ~θML ± σ. This is another situation in which frequentist and
Bayesian statistics differ in the interpretation of the numerical result

Frequentist: ~θtrue is fixed
“if I repeat the experiment many times, computing each time a confidence interval around ~θML, on
average 68.3% of those intervals will contain ~θtrue”
Coverage: “the interval covers the true value with 68.3% probability”
Direct consequence of the probability being a property of data sets

Bayesian: ~θtrue is not fixed
“the true value ~θtrue will be in the range [~θML − σ, ~θML + σ] with a probabilty of 68.3%”
This corresponds to giving a value for the posterior probability of the parameter ~θtrue
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The Central Limit Theorem

The convergence of the likelihood L(~x; ~θ) to a gaussian is a direct consequence of the central
limit theorem

Take a set of measurements~x = (xi, ..., xN) affected by experimental errors that results in
uncertainties σ1, ..., σN (not necessarily equal among each other)

In the limit of a large number of events, M →∞, the random variable built summing M
measurements is gaussian-distributed:

Q :=
M∑

j=1

xj ∼ N
( M∑

j=1

xj,
M∑

j=1

σ2
j

)
, ∀ f (x, ~θ) (45)

The demonstration runs by expanding in series the characteristic function yi =
xj−µj√
σj

The theorem is valid for any p.d.f. f (x, ~θ) that is reasonably peaked around its expected value.
If the p.d.f. has large tails, the bigger contributions from values sampled from the tails will have a
large weight in the sum, and the distribution of Q will have non-gaussian tails
The consequence is an alteration of the probability of having sums Q outside of the gaussian
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Asymptoticity of the Central limit theorem

The condition M →∞ is reasonably valid if the sum is of many small contributions, and M
does not need to be very large
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Combination of measurements

Measure N times the same quantity: values xi and uncertainties σi. MLE and variance are:

x̂ML =

∑N
i=1

xi
σ2

i∑N
i=1

1
σ2

i

1
σ̂2

x
=

N∑
i=1

1
σ2

i

(46)

The MLE is obtained when each measurement is weighted by its own variance
This is because the variance is essentially an estimate of how much information lies in each
measurement

This works if the p.d.f. is known
Compare this method with an alternative one that does not assume knowledge of the p.d.f.
The second method will be the only one applicable to cases in which the p.d.f. is unknown
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Combination of measurements: alternative method 1/

Take a set of measures sampled from an unknown p.d.f. f (~x, ~θ)

Compute the expected value and variance of a combination of such measurements described
by a function g(~x).

The expected value and variance of xi are elementary:

µ = E[x]Vij = E[xixj]− µiµj (47)

If we want to extract the p.d.f. of g(~x), we would normally use the jacobian of the
transformation of f to g, but in this case we assumed f (~x) is unknown.
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Combination of measurements: alternative method 2/

We don’t know f , but we can still write an expansion in series for it:

g(~x) ' g(~µ) +
N∑

i=1

( ∂g
∂xi

)∣∣∣
x=µ

(xi − µi) (48)

We can compute the expected value and variance of g by using the expansion:

E
[
g(~x)

]
' g(µ), (E[xi − µi] = 0)

σ2
g =

N∑
ij=1

[ ∂g
∂xi

∂g
∂xj

]∣∣∣
~x=~µ

Vij
(49)

The variances are propagated to g by means of their jacobian!

For a sum of measurements, y = g(~x) = x1 + x2, the variance of y is σ2
y = σ2

1 + σ2
2 + 2V12,

which is reduced to the sum of squares for independent measurements
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Combination of measurements: example 1/

Let’s compare the two ways of combining measurements, and check the role of the Fisher
Information
Let’s estimate the number of married people, NM , in a given country

We have data corresponding to a census that permits us to estimate separately the number of
married men NMM and the number of married women NMW :

NHC = 10.0± 0.5 M

NMC = 8± 3 M
(50)

Evidently, the number of married people is NM = NMM + NMW , and we can apply Eq. 49
NM = 10.0 + 8±

√
32 + 0.52 M = 18± 3 M, corresponding to a precision of

σNM
NM
∼ 17%.
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Combination of measurements: example 2/

Imagine the country is somehow incivil, and the marriage can be only between a woman and
a man

We can use this additional information to note that in this case the two estimates NMM and
NMW are independent estimates of the same physical quantity NM

2

We can therefore use Eq. 46 to compute NM
2 and multiply the result by 2, obtaining

NM = 20± 1 M (51)

This estimate corresponds to a precision of only 5%!!!

The dramatic improvement in the precision of the measurement, from 17% to 5%, is a direct
consequence of having used additional information under the form of a relationship
(constraint) between the two available measurements.
A good physicist exploits as many constraints as possible in order to improve the precision of
a measurement

Sometimes the contraints are arbitrary or correspond to special cases
Is is very important to explicitly mention any constraint used to derive a measurement, when quoting
the result.
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Early afternoon: finding a new particle

Vischia Statistics for HEP March 19th, 2018 73 / 106



What is an hypothesis...

Is our hypothesis compatible with the experimental data? By how much?
Hypothesis: a complete rule that defines probabilities for data.

An hypothesis is simple if it is completely specified (or if each of its parameters is fixed to a single
value)
An hypothesis is complex if it consists in fact in a family of hypotheses parameterized by one or more
parameters

“Classical” hypothesis testing is based on frequentist statistics
An hypothesis—as we do for a parameter ~θtrue—is either true or false. We might improperly say that
P(H) can only be either 0 or 1
The concept of probability is defined only for a set of data~x

We take into account probabilities for data, P(~x|H)

For a fixed hypotesis, often we write P(~x; H), skipping over the fact that it is a conditional probability
The size of the vector~x can be large or just 1, and the data can be either continuos or discrete.
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...and how do we test it?

The hypothesis can depend on a parameter
Technically, it consists in a family of hypotheses scanned by the parameter
We use the parameter as a proxy for the hypothesis, P(~x; θ) := P(~x; H(θ).

We are working in frequentist statistics, so there is no P(H) enabling conversion from P(~x|θ)
to P(θ|~x).
Statistical test

A statistical test is a proposition concerning the compatibility of H with the available data.
A binary test has only two possible outcomes: either accept or reject the hypothesis
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Testing the world as we know it...
Suppose we want to test an hypothesis H0

H0 is normally the hypothesis that we assume true in absence of further evidence
Let X be a function of the observations (called “test statistic”)
Let W be the space of all possible values of X, and divide it into

A critical region w: observations X falling into w are regarded as suggesting that H0 is NOT true
A region of acceptance W − w

The size of the critical region is adjusted to obtain a desired level of significance α
Also called size of the test
P(X ∈ w|H0) = α
α is the probability of rejecting H0 when H0 is actually true

OnceW is defined, given an observed value~xobs in the space of data, we define the test by
saying that we reject the hypothesis H0 if~xobs ∈ W.
If~xobs is inside the critical region, then H0 is rejected; in the other case, H0 is accepted

In this context, accepting H0 does not mean demonstrating its truth, but simply not rejecting it
Choosing a small α is equivalente to giving a priori preference to H0!!!
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...while introducing some spice in it

The definition ofW depends only on its area α, without any other condition
Any other area of area α can be defined as critical region, independently on how it is placed with
respect to~xobs
In particular, for an infinite number of choices ofW , the point~xobs—which beforehand was situated
outside ofW—is now included inside the critical region
In this condition, the result of the test switches from accept H0 to reject H0

To remove or at least reduce this arbitrariness in the choice ofW, we introduce the alternative
hypothesis, H1

The idea is to choose the critical region so that the probability of a point~x being insideW be
α under H0, and that it is as large as possible under H1
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A small example

H0: pp→ pp elastic scattering

H1: pp→ ppπ0

Compute the missing mass M (as
total rest energy of unseen
particles)

Under H0, M = 0

Under H1, M = 135 MeV

Choose H0 Choose H1
H0 is true 1− α α (Type I error)
H1 is true β (Type II error) 1− β

Plot from James, 2nd ed.
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Basic hypothesis testing – 4

The usefulness of the test depends on how well it discriminates against the alternative
hypothesis
The measure of usefulness is the power of the test

P(X ∈ w|H1) = 1− β
Power (1− β) is the probabiliity of X falling into the critical region if H1 is true
P(X ∈ W − w|H1) = β
β is the probability that X will fall into the acceptance region if H1 is true

NOTE: some authors use β where we use 1− β. Pay attention, and live with it.

Plots from James, 2nd ed.
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Comparing tests

For parametric (families of) hypotheses, the power depends on the parameter
H0 : θ = θ0
H1 : θ = θ1
Power: p(θ1) = 1− β

Generalize for all possible alternative hypotheses: p(θ) = 1− β(θ)
For the null, p(θ0) = 1− β(θ0) = α

Plot from James, 2nd ed.
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Properties of tests
More powerful test: a test which at least as powerful as any other test for a given θ
Uniformly more powerful test: a test which is the more powerful test for any value of θ

A less powerful test might be preferrable if more robust than the UMP1

If we increase the number of observations, it makes sense to require consistency
The more observations we add, the more the test distinguishes between the two hypotheses
Power function tends to a step function for N →∞

Biased test: argmin(p(θ)) 6= θ0

More likely to accept H0 when it is false than
when it is true

Big no-no for θ0 vs θ1]

Still useful (larger power) for θ0 vs θ2

Plot from James, 2nd ed.
1Robust: a test with low sensitivity to unimportant changes of the null hypothesis
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Play with Type I (α) and Type II (β) errors freely

Comparing only based on the power curve
is asymmetric w.r.t. α
For each value of α = p(θ0), compute
β = p(θ1), and draw the curve

Unbiased tests fall under the line 1− β = α
Curves closer to the axes are better tests

Ultimately, though, choose based on the
cost function of a wrong decision

Bayesian decision theory

Plot from James, 2nd ed.
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Find the most powerful test

Testing simple hypotheses H0 vs H1, find the best critical region

Maximize power curve 1− β =
∫

wα
f (X|θ1)dX, given α =

∫
wα

f (X|θ0)dX

The best critical region wα consists in the region satisfying the likelihood ratio equation

`(X, θ0, θ1) :=
f (X|θ1)

f (X|θ0)
≥ cα

The criterion, called Neyman-Pearson test is therefore
If `(X, θ0, θ1) > cα then choose H1
If `(X, θ0, θ1) ≤ cα then choose H0

The likelihood ratio must be calculable for any X
The hypotheses must therefore be completely specified simple hypotheses
For complex hypotheses, ` is not necessarily optimal
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Confidence intervals!

Confidence interval for θ with probability content β
The range θa < θ < θb containing the true value θ0 with probability β
The physicists sometimes improperly say the uncertainty on the parameter θ

Given a p.d.f., the probability content is β = P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX

If θ is unknown (as is usually the case), use auxiliary variable Z = Z(X, θ) with p.d.f. g(Z)
independent of θ
If Z can be found, then the problem is to estimate interval P(θa ≤ θ0 ≤ θb) = β

Confidence interval
A method yielding an interval satisfying this property has coverage

Example: if f (X|θ) = N(µ, σ2) with unknown
µ, σ, choose Z = X−µ

σ

Find [c, d] in
β = P(c ≤ Z ≤ d) = Φ(d)− Φ(c) by finding
[Zα, Zα+β ]

Infinite interval choices: here central interval
α = 1−β

2

Plot from James, 2nd ed.
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Confidence intervals in many dimensions

Generalization to multidimensional θ is immediate
Probability statement concerns the whole θ, not the individual θi

Shape of the ellipsoid governed by the correlation coefficient (or the mutual information)
between the parameters
Arbitrariety in the choice of the interval is still present

Plot from James, 2nd ed.
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Confidence belts: the Neyman construction

Unique solutions to finding confidence intervals are infinite
Central intervals, lower limits, upper limits, etc

Let’s suppose we have chosen a way

Build horizontally: for each (hypothetical) value of θ, determine t1(θ), t2(θ) such that∫
t 1t2P(t|θ)dt = β

Read vertically: from the observed value t0, determine [θL, θU ] by intersection
The resulting interval might be disconnected in severely non-linear cases

Probability content statements to be seen in a frequentist way
Repeating many times the experiment, the fraction of [θL, θ

U ] containing θ0 is β

Plot from James, 2nd ed.
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Upper limits for non-negative parameters
Gaussian measurement ( variance 1) of a non-negative parameter µ ∼ 0 (physical bound)
Individual prescriptions are self-consistent

90% central limit (solid lines)
90% upper limit (single dashed line)

Other choices are problematic (flip-flopping): never choose after seeing the data!
“quote upper limit if xobs is less than 3σ from zero, and central limit above” (shaded)
Coverage not guaranteed anymore (see e.g. µ = 2.5)

Unphysical values and empty intervals: choose 90% central interval, measure xobs = −2.0
Don’t extrapolate to an unphysical interval for the true value of µ!
The interval is simply empty, i.e. does not contain any allowed value of µ
The method still has coverage (90% of other hypothetical intervals would cover the true value)

Plot from James, 2nd ed.
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Unphysical values: Feldman-Cousins

The Neyman construction results in guaranteed coverage, but choice still free on how to fill
probability content

Different ordering principles are possible (e.g. central/upper/lower limits)

Unified approach for determining interval for µ = µ0: the likelihood ratio ordering principle

Include in order by largest `(x) =
P(x|µ0)

P(x|µ̂)

µ̂ value of µ which maximizes P(x|µ) within the physical region
µ̂ remains equal to zero for µ < 1.65, yielding deviation w.r.t. central intervals

Minimizes Type II error (likelihood
ratio for simple test is the most
powerful test)

Solves the problem of empty
intervals

Avoids flip-flopping in choosing an
ordering prescription

Plot from James, 2nd ed.
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Feldman-Cousins in HEP
The most typical HEP application of F-C is confidence belts for the mean of a Poisson
distribution
Discreteness of the problem affects coverage
When performing the Neyman construction, will add discrete elements of probability
The exact probability content won’t be achieved, must accept overcoverage∫ x2

x1

f (x|θ)dx = β →
U∑

i=L

P(xi|θ) ≥ β

Overcoverage larger for small values of µ (but less than other methods)

Plot from James, 2nd ed.
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Bayesian intervals

Often numerically identical to frequentist confidence intervals
Particularly in the large sample limit

Interpretation is different: credible intervals

Posterior density summarizes the complete knowledge about θ

π(θ|X) =

∏N
i=1 f (Xi, θ)π(θ)∫ ∏N
i=1 f (Xi, θ)π(θ)dθ

An interval [θL, θU ] with content β defined by
∫ θU

θL
π(θ|X)dθ = β

Bayesian statement! P(θL < θ < θU = β

Again, non unique

Issues with empty intervals don’t arise, though, because the prior takes care of defining the
physical region in a natural way!

But this implies that central intervals cannot be seamlessly converted into upper limits
Need the notion of shortest interval
Issue of the metric (present in frequentist statistic) solved because here the preferred metric is
defined by the prior
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Beyond coverage: CLs

Goal: seamless transition between exclusion, observation, discovery (historically for the
Higgs)

Exclude Higgs as strongly as possible in its absence (in a region where we would be sensitive to its
presence)
Confirm its existence as strongly as possible in its presence (in a region where we are sensitive to its
presence)
Maintain Type I and Type II errors below specified (small) levels

Identify observables, and a suitable test statistic Q
Define rules for exclusion/discovery, i.e. ranges of values of Q leading to various conclusions

Specify the significance of the statement, in form of confidence level (CL)

Confidence limit: value of a parameter (mass, xsec) excluded at a given confidence level CL
A confidence limit is an upper(lower) limit if the exclusion confidence is greater(less) than the
specified CL for all values of the parameter below(above) the confidence limit

The resulting intervals are neither frequentist nor bayesian!
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Get your confidence levels right

Find a monotonic Q for increasing signal-like
experiments (e.g. likelihood ratio)
CLs+b = Ps+b(Q ≤ Qobs)

Small values imply poor compatibility with S + B
hypothesis, favouring B-only

CLb = Pb(Q ≤ Qobs)
Large (close to 1) values imply poor compatibility with
B-only, favouring S + B

What to do when the estimated parameter is
unphysical?

The same issue solved by Feldman-Cousins
If there is also underfluctuation of backgrounds, it’s
possible to exclude even zero events at 95$CL!
It would be a statement about future experiments
Not enough information to make statements about the
signal

Normalize the S + B confidence level to the B-only
confidence level!

Plot from Read, CERN-open-2000-205
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Avoid issues at low signal rates

CLs :=
CLs+b

CLb

Exclude the signal hypothesis at confidence level CL if
1− CLs ≤ CL
Ratio of confidences is not a confidence

The hypotetical false exclusion rate is generally less
than the nominal 1− CL rate
CLs and the actual false exclusion rate grow more
different the more S + B and B p.d.f. become similar

CLs increases coverage, i.e. the range of parameters
that can be exclude is reduced

It is more conservative
Approximation of the confidence in the signal hypothesis
that might be obtained if there was no background

Avoids the issue of CLs+b with experiments with the
same small expected signal

With different backgrounds, the experiment with the
larger background might have a better expected
performance

Dashed: CLs+b
Solid: CLs

S < 3: exclusion for a B-free search ≡ 0
Plot from Read, CERN-open-2000-205
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A practical example: Higgs discovery - 1

Apply the CLs method to each Higgs mass point

Green/yellow bands indicate the ±1σ and ±2σ intervals for the expected values under B-only
hypothesis
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Quantifying excesses

Quantify the presence of the signal by using the background-only p-value
Probability that the background fluctuates yielding and excess as large or larger of the observed one

For the mass of a resonance, q0 = −2logL(data|0,θ̂0)

L(data|µ̂,θ̂)
, with µ̂ ≥ 0

Interested only in upwards fluctuation, accumulate downwards one to zero

Use pseudo-data to generate background-only Poisson counts and nuisance parameters θobs
0

Use distribution to evaluate tail probability p0 = P(q0 ≤ qobs
0 )

Convert to one-sided Gaussian tail areas by inverting p = 1
2 P
χ2

1
(Z2)

Plots from ATL-PHYS-PUB-2011-011 and from Higgs discovery
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The Look-elsewhere effect
Searching for a resonance X of arbitrary mass

H0 = no resonance, the mass of the resonance is not defined (Standard Model)
H1 = H(M 6= 0), but there are infinte possible values of M

Wilks theorem not valid anymore, no unique test statistic encompassing every possible H1
Quantify the compatibility of an observation with the B-only hypothesis

q0(m̂X) = maxmX q0(mX)

Write a global p-value as pglobal
b := P(q0(m̂X) > u) ≤ 〈Nu〉+ 1

2 P
χ2

1
(u)

u fixed confidence level
Crossings computable using pseudo-data (toys)
Ratio of global and local p-value: trial factor
Asymptoticly linear in the number of search regions and in the fixed significance level

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
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Tea time: measuring differential distributions
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Unfolding: the problem

Unfolding it’s about how to invert a matrix that should not be inverted

L = (y− Ax)T Vyy(y− Ax),

Observations y, to be transformed in the theory space into x
Model the detector as a response matrix
Invert the response to convert experimental data to theory space distributions
Usually to compare with models in the theory space

The best solution is to fold any new theory and make comparisons in the experimental data
space
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Unfolding: naïve solutions

Bin-by-bin correction factors x̂i = (yi − bi)
Ngen

i
Nrec

i
; disfavoured

Heavy biases due to the underlying MC truth
Yields the wrong normalization for the unfolded distribution

Invert the response matrix x̂ = A−1(y− b)
Only for square matrices, but always unbiased
Oscillation patterns (small determinants in matrix inversion)
Patterns also seen as large negative ρij ∼ −1 near diagonal
Result is correct within uncertainty envelope given by Vxx
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Unfolding: regularization 1/

χ2
TUnfold =χ2

A + τ 2χ2
L

χ2
A = (Ax̂ + b− y)T(Vyy)

−1(Ax̂ + b− y)

χ2
L = (x̂− xB)TLTL(x̂− xB)

Choose τ corresponding to maximum curvature of L-curve

Or minimize the global ρavg = 1
Mx

∑Mx
j=1 ρj

Often results in stronger regularization than L-curve
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Unfolding: regularization 2/

L(x, λ) = L1 + L2 + L3,

L1 = (y− Ax)
T Vyy(y− Ax),

L2 = τ
2
(x− fbx0)

T
(LT L)(x− fbx0),

L3 = λ(Y − eT x),

Y =
∑

i

yi,

ej =
∑

i

Aij.

y: observed yields

A: response matrix

x: the unfolded result

L1: least-squares minimization
(Vij = eij/eiiejj correlation coefficients)

L2: regularization with strength τ

Bias vector fbx0: reference with respect to
which large deviations are suppressed

L3; area constraint (bind unfolded
normalization to the total yields in folded
space)
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Unfolding: Iterative Unfolding
Iterative improvement over the result of a previous iteration;
x(n+1)

j = x(n)
j
∑M

i=1
Aij
εj

yi∑N
k=1 Aikx(n)

k +bi

It converges (slowly, Niter ∼ N2
bins) to the MLE of the likelihood for independent Poisson-distributed yi

Not necessarily unbiased for correlated data (does not make use of covariance of input data Vyy)
In HEP most people don’t iterate until convergence

Fixed Niter is often used; the dependence on starting values provides regularization
Intrinsically frequentist method

for Niter →∞ converges to matrix inversion, if all x̂j from matrix inversion are positive
Niter = 0 sometimes called improperly “Bayesian” unfolding (the author, D’Agostini, is Bayesian)

Don’t use software defaults!!! (e.g. some software has Niter = 4)
Minimizing the global ρ is a good objective criterion, but there are others (Akaike information, etc)

Positive
correlations
in 1st iteration
(smearing)
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End of the afternoon: work with difficult final
states
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Machine learning

Machine learning is a generalization of fitting functions

The basics you got today are more important for a small course

I preferred going more in detail about the basics of point and interval estimation and
hypothesis tests

Leaving Machine Learning for another time ,
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Summary: go home before 18h2

Have a healthy 8h/day work schedule
Don’t work outside those hours

Have long nights of sleep
It’s very important!

2Except during this Course ,
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Non-exhaustive list of references

Frederick James: Statistical Methods in Experimental Physics - 2nd Edition, World Scientific

Glen Cowan: Statistical Data Analysis - Oxford Science Publications

Louis Lyons: Statistics for Nuclear And Particle Physicists - Cambridge University Press

Louis Lyons: A Practical Guide to Data Analysis for Physical Science Students - Cambridge
University Press

Annis?, Stuard, Ord, Arnold: Kendall’s Advanced Theory Of Statistics I and II

R.J.Barlow: A Guide to the Use of Statistical Methods in the Physical Sciences - Wiley

Kyle Cranmer: Lessons at HCP Summer School 2015

Kyle Cranmer: Practical Statistics for the LHC - http://arxiv.org/abs/1503.07622

Harrison Prosper: Practical Statistics for LHC Physicists - CERN Academic Training Lectures,
2015 https://indico.cern.ch/category/72/
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THANKS FOR THE ATTENTION!
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