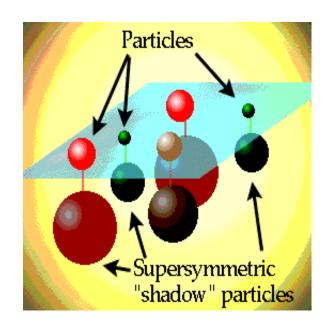

Physics at LHC: SUperSYmmetry

Pedrame Bargassa

LIP 22/04/2019


Outline

- SUperSYmmetry: Brief introduction & Motivations
- Reminder of Standard Model (SM) Lagrangian
- SUSY phenomenology: Deeper look
 - "Constructing" the SUSY Lagrangian
 - Different sectors of MSSM:
 - Squark & Slepton
 - Chargino
 - Neutralino
 - > Higgs

Advised readings:

- "SUSY & Such" S. Dawson, arxiv:hep-ph/9612229v2
- "A supersymmetry primer" S. P. Martin, arxiv:hep-ph/9709356

Brief introduction & Motivations

Supersymmetry: Introduction words

"Generalize" the spin of known fields

SUperSYmmetry: spin particle $\frac{1}{2} \leftrightarrow$ spin partner 0 spin particle $1 \leftrightarrow$ spin partner $\frac{1}{2}$

Names		spin 0	spin 1/2
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger
	\overline{d}	\widetilde{d}_R^*	d_R^{\dagger}
sleptons, leptons	L	$(\widetilde{\nu} \ \widetilde{e}_L)$	$(\nu \ e_L)$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger
Higgs, higgsinos	H_u	$(H_u^+ \ H_u^0)$	$(\widetilde{H}_u^+ \ \widetilde{H}_u^0)$
	H_d	$(H_d^0 \ H_d^-)$	$(\widetilde{H}_d^0 \ \widetilde{H}_d^-)$

Names	spin $1/2$	spin 1	
gluino, gluon	\widetilde{g}	g	
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	W^{\pm} W^0	
bino, B boson	\widetilde{B}^0	B^0	

Observed SUSY particles with same mass than Standard-Model partners? No!

- SUSY: A broken symmetry!
 Physical sParticles:
 Mixture of super-partners
- Charginos (χ^{\pm}) / Neutralinos (χ^{0}) : Bino/Wino \leftrightarrow Higgs (charged/neutral)
- > Squarks, Sleptons : Mixture of $f_L \leftrightarrow f_R$

Supersymmetry: The natural cure of Hierarchy problem

Discovery of a Higgs Boson:

$$m_{_{\rm H}} = 125 \text{ GeV/c}^2$$

Consider Higgs mass correction from fermionic loop:

$$\Delta m_H^2 = \frac{\lambda_f^2}{16\pi^2} \cdot \left[-2\Lambda_{UV}^2 + \dots \right]$$

 $\Lambda_{_{
m UV}}$: Energy-scale at which new physics alters the Standard-Model (momentum cut-off regulating the loop-integral)

If
$$\Lambda_{UV} \sim M_P \rightarrow \Delta m_H^2 \sim O(10^{30})$$
 larger than $m_H!!!$

And all Standard-Model masses indirectly sensitive to $\Lambda_{_{\rm IIV}}$!!!

$$\Delta m_{H}^{2} = \frac{\lambda_{f}^{2}}{16\pi^{2}} \cdot \left[-2\Lambda_{UV}^{2} + ...\right]^{\frac{H}{2}} \cdot \left[-2\Lambda_{UV}^{2} + ...\right]^{\frac{1}{H}} \cdot \left[-2\Lambda_{UV}^$$

 $\Delta m_{_{\rm H}}^2$ quadratic divergence cancelled :

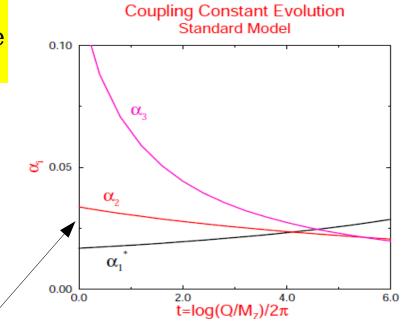
Hierarchy problem naturally solved!

Supersymmetry & Coupling constants

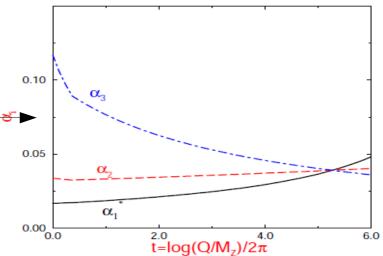
In Gauge theories:

Predict coupling constants at a scale Q once we measured them at another:

$$1/\alpha_i(\mathbf{Q}) = 1/\alpha_i(\mathbf{M}_z) + (\mathbf{b}_i/2) \log[\mathbf{M}_z/\mathbf{Q}]$$


 b_i : Function of N_g (=3) and N_H (Number of Higgs doublets)

In Standard-Model : $N_H = 1$ -> b_i 's *such* that ...


In SUSY: $N_H=2$ + New particles contributing to a different evolution of coupling constants

-> b_i's *such* that !

SUSY can naturally be incorporated into Grand Unified Theories

Coupling Constant Evolution SUSY Model

Supersymmetry & Dark Matter

Most general SUSY lagrangian allows interactions leading to Baryon- & Lepton-number violation!

Now if sParticles were to exist at TeV scale: Such interactions very seriously restricted by experimental observation!

In SUSY: $N_{B,L}$ conservation *can* be "protected" by new symmtery R_p :

- Eigenvalue: $(-1)^{3(B-L)+s}$
 - +1 / -1 for SM / SUSY particles
- If R_p conserved: Lightest Supersymmetric Particle (LSP) is stable In most SUSY scenarios, LSP is either:
 - The lightest neutralino $\tilde{\chi}^0$ (mixture of neutral Higgsinos / Bino / Wino)
 - Scalar neutrinos
- ...In all cases a weakly interacting neutral particle

SUSY can have a natural candidate for the observed Cold Dark Matter: ~25% of mass of universe

Revisiting SM Lagrangian

SM Lagrangian

Let's put the QCD part aside & have a look at the EW part only

$$L_{EW} = L_{free+interaction} + L_{gauge} + L_{higgs} + L_{yukawa}$$

SM Lagrangian: Free & Interaction parts

$$\mathbf{L}_{\text{free+interaction}} = \boldsymbol{\Sigma}_{\text{f}} \mathbf{i} \left[\boldsymbol{\bar{\psi}}_{\text{f}}^{\ L} \, \boldsymbol{\gamma}^{\mu} \, \, \boldsymbol{D}_{\ \mu}^{L} \, \, \boldsymbol{\psi}_{\text{f}}^{\ L} + \boldsymbol{\bar{\psi}}_{\text{f}}^{\ R} \, \boldsymbol{\gamma}^{\mu} \, \, \boldsymbol{D}_{\ \mu}^{R} \, \, \boldsymbol{\psi}_{\text{f}}^{\ R} \right]$$

- $\rightarrow \psi_f^{L,R}$: Left and Right fermion, CC, Dirac spinors
- → Gauge-invariant derivatives:

$$\begin{split} D^{L}_{\ \mu} &= \delta_{\mu} - i \ g \ (\tau_{a}/2) \ W^{a}_{\ \mu} - i \ g' \ (Y_{L}/2) \ B_{\mu} \\ D^{R}_{\ \mu} &= \delta_{\mu} & - i \ g' \ (Y_{R}/2) \ B_{\mu} \end{split}$$

- → g, g': Weak-isospin & -hypercharge couplings
- \rightarrow W^a, B.: Weak-isospin & -hypercharge fields
- $\rightarrow \tau_{a}, Y_{L,R}$: Weak-isospin & -hypercharge quantum

numbers, matrices

SM Lagrangian: The gauge part

$$L_{gauge} = -(1/4) W^{a}_{\mu\nu} W^{a\mu\nu} - (1/4) B_{\mu\nu} B^{\mu\nu}$$

→ Gauge-invariant Weak-isospin & -hypercharge fields:

$$W^{a}_{\mu\nu} = \delta_{\mu}W^{a}_{\nu} - \delta_{\nu}W^{a}_{\nu} + g \epsilon_{abc} W^{b}_{\mu}W^{c}_{\nu}$$

$$B_{\mu\nu} = \delta_{\mu}B_{\nu} - \delta_{\nu}B_{\nu}$$

- 2^{nd} term of $W^a_{\mu\nu}$: Self-interacting character of Weak-isospin interaction \rightarrow *This is the term allowing triboson couplings in SM*
- A similar term exists in QCD sector of SM: QCD is also non-abelian → Allows self-coupling

SM Lagrangian: The Higgs part

$$\mathbf{L}_{\mathbf{Higgs}} = (D_{\mu} \phi)^{+} (D^{\mu} \phi) - V(\phi)$$

 $\boldsymbol{D}_{_{\!\scriptscriptstyle L}}$: Same gauge-invariant derivatives as before

→ 1st term: Higgs↔Boson interaction:

Gives Boson masses

Gives Higgs↔Boson couplings

 \rightarrow V(ϕ): Pure Higgs interaction:

Mass:
$$m_{_H} = \sqrt{-2\mu^2} = \sqrt{2\lambda v^2}$$

Coupling: Calculate :-D

The lagrangian has to be SU(2)xU(1) invariant

$$\rightarrow$$
 4 scalar real fields: $\phi = (\phi^+, \phi^0)$

$$\phi^+ = (1/\sqrt{2})(\phi_1 + i\phi_2)$$

$$\phi^0 = (1/\sqrt{2})(\phi_3 + i\phi_4)$$

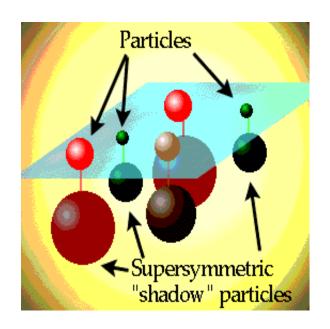
SM Lagrangian: Yukawa

$$L_{\text{yukawa}} = -G_{\text{d}}(\overline{\mathbf{u}}, \overline{\mathbf{d}})_{\text{L}}(\phi^{+}, \phi^{0}) d_{\text{R}} - G_{\text{u}}(\overline{\mathbf{u}}, \overline{\mathbf{d}})_{\text{L}}(-\overline{\phi}^{0}, \phi^{-}) u_{\text{R}} + \text{hermitian-conjugate}$$

(u,d): Up & Down doublets of quarks / leptons

Once Higgs sector is EW-broken:

$$\phi = (1/\sqrt{2})(0,v+H) \rightarrow$$
 "Confers" mass to fermions:


$$L_{\text{vukawa}} = -m_{\text{d}} \, \overline{d}_{\text{L}} d_{\text{R}} \, (1 + H/v) - m_{\text{u}} \, \overline{u}_{\text{L}} u_{\text{R}} \, (1 + H/v)$$

because:
$$m_f = G_f v / \sqrt{2}$$

For neutrinos:
$$m = G_v v / \sqrt{2} \sim 0$$

Pedrame Bargassa – LIP Lisbon

"Constructing" the SUSY Lagrangian

MSSM: Writing the Lagrangian

Recipe to build the particle content and Lagrangian:

- $\,\,\,\,\,$ Each SM fermion f has 2 chiral superpartners: $f_{_L}\,\&\,f_{_R}$
- SM fermions and SUSY sfermions are regrouped in superfields

$$Q = \begin{pmatrix} u \\ d \end{pmatrix}_{L} \longrightarrow \tilde{Q} = \begin{pmatrix} \tilde{u}_{L} \\ \tilde{d}_{L} \end{pmatrix} \quad \overline{d}_{R} \qquad \tilde{d}_{R}^{*}$$

$$L = \begin{pmatrix} \nu \\ e \end{pmatrix}_{L} \longrightarrow \tilde{L} = \begin{pmatrix} \tilde{\nu}_{L} \\ \tilde{e}_{L} \end{pmatrix} \quad \overline{e}_{R} \qquad \tilde{e}_{R}^{*}$$

$$SM$$

$$MCCM$$

SM MSSM

- Gauge superfields: "Simply" containing the SM gauge fields and their SUSY partners
- Sauge superfields: Respecting the $SU(3) \times SU_{L}(2) \times U(1)$

MSSM: Writing the Lagrangian

Superfields of Gauge & Matter, by definition, respect the gauge symmetries extended from the SM

Superfield	SU(3)	$SU(2)_L$	$U(1)_Y$	Particle Content
\hat{Q}	3	2	<u>1</u> 6	$(u_L, d_L), (\tilde{u}_L, \tilde{d}_L)$
\hat{U}^c	$\overline{3}$	1	$-\frac{2}{3}$	$\overline{u}_R,\ \widetilde{u}_R^*$
\hat{D}^c	$\overline{3}$	1	$\frac{1}{3}$	$\overline{d}_R,\ ilde{d}_R^*$
\hat{L}	1	2	$-\frac{1}{2}$	$(\nu_L, e_L), (\tilde{\nu}_L, \tilde{e}_L)$
\hat{E}^c	1	1	1	$\overline{e}_R,\ \widetilde{e}_R^*$
\hat{H}_1	1	2	$-\frac{1}{2}$	$(H_1, ilde{h}_1)$
\hat{H}_2	1	2	$\frac{1}{2}$	$(H_2, ilde{h}_2)$

Superfield	SU(3)	$SU(2)_L$	$U(1)_Y$	Particle Content
\hat{G}^a	8	1	0	$g, ilde{g}$
\hat{W}^i	1	3	0	$W_i,\ ilde{\omega}_i$
\hat{B}	1	1	0	$B, ilde{b}$

MSSM: Writing the Lagrangian

The interaction part:

$$\mathcal{L}_{int} = -\sqrt{2} \sum_{i,A} g_A \left[S_i^* T^A \overline{\psi}_{iL} \lambda_A + \text{h.c.} \right] - \frac{1}{2} \sum_A \left(\sum_i g_A S_i^* T^A S_i \right)^2$$

- Interaction-specific quantum number
- S_i: Scalar fields: Squarks & Sleptons
- ψ_i : Higgsinos
- λ_{A} : Gauge <u>fermions</u>

The gauge invariant derivative part: Same as introduced in SM, but generalized to superfields

The kinetic part:

$$\mathcal{L}_{KE} = \sum_{i} \left\{ (D_{\mu} \overline{S_{i}^{*}}) (D^{\mu} \overline{S_{i}}) + i \overline{\psi}_{i} D \psi_{i} \right\}$$

$$+ \sum_{A} \left\{ -\frac{1}{4} F_{\mu\nu}^{A} F^{\mu\nu A} + \frac{i}{2} \overline{\lambda}_{A} D \lambda_{A} \right\}$$

MSSM: SM → MSSM correspondance

Fermion

Scalar

Gauge field

<u>SM</u>

$$i \overline{f} \gamma^{\mu} D_{\mu} f +$$

$$(D_{\mu} \phi)^{+}(D^{\mu} \phi)$$

SM: Higgs

- (1/4) $F_{\mu\nu}F^{\mu\nu}$

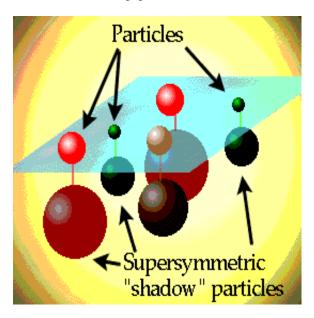
MSSM (includes what is above)

$$i\; \psi^{\!\!-} \gamma^\mu \; D_{_\mu} \; \psi \; + \;$$

MSSM: Higgsinos

+(i/2)
$$\lambda_A^- \gamma^{\mu} D_{\mu} \lambda_A$$

Gauge fermions


$$(D_{\mu} S_{i})^{+}(D^{\mu} S_{i})$$

Squarks & Sleptons

 $- (1/4) F_{\mu\nu} F^{\mu\nu}$

Same as above

SUSY: Let's minimally break it: Broken & effective MSSM

SUSY breaking

How is it broken? We don't know... did not discover it (yet)...

How we *think* it's broken: Models/Implications by/for the theorists/experimentalists

mSUGRA) Spontaneous Super-Gravity breaking: More constrained $\rightarrow 5$ parameters @ breaking scale -> RGEs → Our mass spectrum

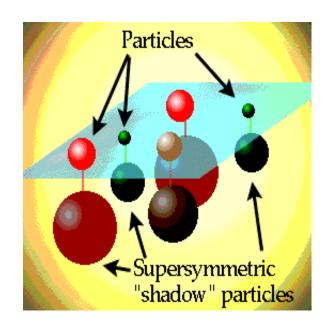
- m_o: Scalar mass
- m_{1/2}: Fermion mass
- μ : Higgs parameter ($\mu H_1 H_2$)
- A: Tri-linear squark/slepton mixing term
- $\tan \beta = \langle H^0_2 \rangle / \langle H^0_1 \rangle$

MSSM

Parametrizing our ignorance of SUSY breaking, i.e. no hypothesis: Un-constrained → 124 parameters

- $tan\beta$ / μ / M_{A} (pseudoscalar Higgs boson mass)
- $\mathbf{M}_{L1,2,3}$: Controls slepton masses
- M_{01.2.3}: Controls squark masses
- M_{1,2}: Controls neutralino/chargino sectors

This is the most general Lagrangian we can write, hence the large number of unknowns: Only the spin hypothesis has been made

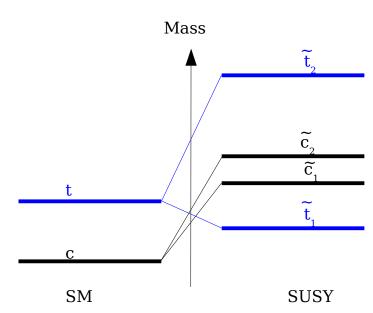

MSSM: Effective Lagrangian

- We don't know <u>how</u> SUSY is broken, but can write the **most general** broken effective Lagrangian
- Soft: The breaking of the symmetry is taken care of by introducing "soft" mass terms for scalars & gauginos: Soft because no reintroduction of quadratic divergence
- Maximal dimension of soft operators: ≤ 3 → Mass terms, Bilinear & Trilinear terms

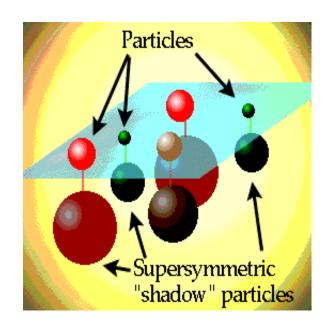
$$-\mathcal{L}_{soft} = \boxed{ m_1^2 \mid H_1 \mid^2 + m_2^2 \mid H_2 \mid^2 } - \boxed{B\mu\epsilon_{ij}(H_1^i H_2^j + \text{h.c.}) + \boxed{\tilde{M}_Q^2(\tilde{u}_L^* \tilde{u}_L + \tilde{d}_L^* \tilde{d}_L)} } \\ + \tilde{M}_u^2 \tilde{u}_R^* \tilde{u}_R + \tilde{M}_d^2 \tilde{d}_R^* \tilde{d}_R + \tilde{M}_L^2(\tilde{e}_L^* \tilde{e}_L + \tilde{\nu}_L^* \tilde{\nu}_L) + \tilde{M}_e^2 \tilde{e}_R^* \tilde{e}_R} \\ + \frac{1}{2} \boxed{ \boxed{M_3 \tilde{g} \tilde{g} + M_2 \overline{\tilde{\omega}_i} \tilde{\omega}_i + M_1 \overline{\tilde{b}} \tilde{b}} } + \frac{g}{\sqrt{2} M_W} \epsilon_{ij} \boxed{ \frac{M_d}{\cos \beta} A_d H_1^i \tilde{Q}^j \tilde{d}_R^* } \\ + \frac{M_u}{\sin \beta} A_u H_2^j \tilde{Q}^i \tilde{u}_R^* + \frac{M_e}{\cos \beta} A_e H_1^i \tilde{L}^j \tilde{e}_R^* + \text{h.c.}} \qquad .$$

Specificity of SUSY: Writing the most general Lagrangian, generalizing the spins of fields, SUCH that quadratic divergences are always shut down

Squark & Slepton sector


MSSM: Squark & Slepton sector

Physical states are 2 scalar mass-eigenstates: Mixtures of left-&-right chiral superpartners (scalars) of SM quark and leptons


Let's pick-up example of the top sector: If $[f_1 - f_R]$ chiral basis:

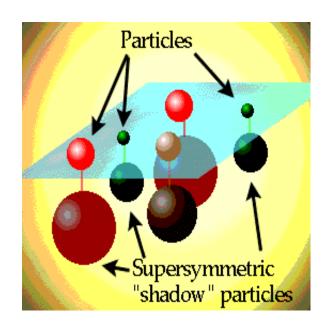
$$M_{\tilde{t}}^{2} = \begin{pmatrix} \tilde{M}_{Q}^{2} + M_{T}^{2} + M_{Z}^{2}(\frac{1}{2} - \frac{2}{3}\sin^{2}\theta_{W})\cos 2\beta & M_{T}(A_{T} + \mu\cot\beta) \\ M_{T}(A_{T} + \mu\cot\beta) & \tilde{M}_{U}^{2} + M_{T}^{2} + \frac{2}{3}M_{Z}^{2}\sin^{2}\theta_{W}\cos 2\beta \end{pmatrix}$$

- \widetilde{M}_{0} : Left squark mass
- $ightharpoonup \widetilde{M}_{_{\mathrm{II}}}$: Right squark mass
- A_T: Trilinear coupling specific to the top sector
- $M_Q = M_T$: Mass of the SM particle
- μ: Higgs (bilinear) mixing parameter
- β: Higgs vev-specific parameter (see in a couple of slides): Plays a role in the mixing

Chargino sector

MSSM: Chargino sector

Physical states are 2 fermionic mass-eigenstates: Mixtures of charged winos and charged higgsinos, which are SUSY eigenstates


In the charged [wino - higgsino] basis:

$$M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin \beta \\ \sqrt{2}M_W \cos \beta & -\mu \end{pmatrix}$$

- M₂: Mass of the wino
- μ: Higgs (bilinear) mixing parameter

- > The more M_2 > 1: The more the charginos are wino-like
- Comments: \rightarrow The more $\mu \gg 1$: The more the charginos are higgsino-like
 - β : Not playing a role in mixing

Neutralino sector

MSSM: Neutralino sector

Physical states are 4 fermionic mass-eigenstates: Mixtures of neutral winos \mathbf{w}^0 , bino b, and 2 neutral higgsinos, which are SUSY eigenstates

In the neutral [b - w^0 - h^0_1 - h^0_2] basis:

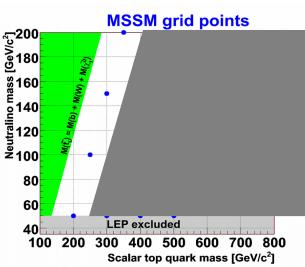
$$M_{\tilde{\chi}_i^0} = \left(\begin{array}{cccc} M_1 & 0 & -M_Z \cos \beta \sin \theta_W & M_Z \sin \beta \sin \theta_W \\ 0 & M_2 & M_Z \cos \beta \cos \theta_W & -M_Z \sin \beta \cos \theta_W \\ -M_Z \cos \beta \sin \theta_W & M_Z \cos \beta \sin \theta_W & 0 & \mu \\ M_Z \sin \beta \sin \theta_W & -M_Z \sin \beta \cos \theta_W & \mu & 0 \end{array} \right)$$

- M₁: Mass of the bino
- M_2 : Mass of the wino
- μ: Higgs (bilinear) mixing parameter

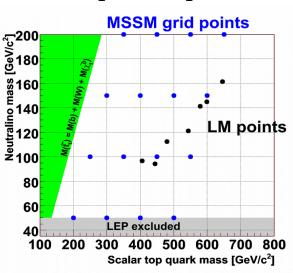
<u>Exercise</u>: Qualitatively gauge the influence of each parameters in the mass-matrix above on the "type" of neutralinos

Pedrame Bargassa – LIP Lisbon

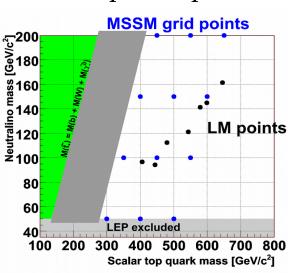
EXERCISES


- 1/ Install the SuSpect software on your computer: This one of the only SUSY spectrum calculators with parametrized MSSM (pMSSM) parameters as input: You don't have 124, but 27 parameters to play with ;-)
- 2/ Just play with different parameters and follow evolution of the generated masses
 - 2i) What are the most sensitive parameters for different types of particles?
 - 2ii) Once you get an idea for 2i): For a set of frozen parameters, produce plots showing evolution of the physical masses, say , as function of pMSSM parameters

For 2i) & 2ii), let's pick-up:


- → The lightest neutralino
- → The chargino
- → The lightest stop and stau
- → The lighest Higgs
- 3/ Once your fingers are well warmed-up with pMSSM, produce the points on the following page :-D

Stop decays: Different diagrams for different domains



$$\widetilde{\mathbf{t}}_{1} \to \mathbf{b} \ \widetilde{\chi}_{1}^{+}$$

$$\widetilde{\mathbf{t}}_{1} \to \mathbf{t} \; \widetilde{\chi}_{1}^{0}$$

Conditions:

b+W+
$$\widetilde{\chi}_{1}^{0}$$
 < \widetilde{t}_{1}
 \widetilde{t}_{1} < t+ $\widetilde{\chi}_{1}^{0}$:
Close \widetilde{t}_{1} -> t+ $\widetilde{\chi}_{1}^{0}$

$$b \! + \! W \! + \! \widetilde{\chi}_{_{1}}{^{_{0}}} < \widetilde{t}_{_{1}}$$

$$W + \widetilde{\chi}_1^0 < \widetilde{\chi}_1^+ < \widetilde{t}_1^- b$$

$$t + \widetilde{\chi}_1^0 < \widetilde{t}_1$$

← Not exclusive: Will co-exist →

"Dominance" conditions:

$$\widetilde{t}_{1} < \widetilde{\chi}^{+}_{1} + b$$
:

Make $\tilde{\chi}^{+}_{1}$ virtual

$$t + \widetilde{\chi}_1^0 < \widetilde{\chi}_1^+ + b$$
:

Privilege vs b $\widetilde{\chi}_{_{1}}^{_{+}}$