

Initial study on 36 GHz linearizing structure and waveguide network

Xiaowei Wu (CERN)

Global view of Linearizer system

Detailed work to be done in collaboration with Lancaster University (Graeme Burt, Alejandro Castilla) in WorkPackage3

Early validation of the Gyroklystron parameters

Background of Linearizer

- Linearize the bunch compression process in XFEL by RF harmonic compensation
 - correct the longitudinal phase space non-linearity from harmonic RF
 - higher harmonics are more efficient for second-order compensation, decelerating the beam less

Emma, Paul. No. SLAC-TN-05-004. SLAC, Menlo Park, CA, 2005.

$$V \propto \left(rac{f_a}{f_L}
ight)^2$$

 f_a : Linac

 f_L : Linearizer

X-band Linearizer has been well applied in XFEL facility

FERMI@Elettra FEL

SXFEL@SINAP

PAL-XFEL@PAL

Proceeding of GdA CERN meeting, 2012.

Proceeding of 8th RADSYNCH, 2015.

Motivation of Ka-band Linearizer study at CERN

- Take advantage of extensive experience in CLIC with 30 GHz in the years preceding 2007
- 30 GHz CLIC accelerating structure
- 30 GHz PETS in CTF3
- SLEDII pulse compressor
- Over-moded transmission line
- Experience on many 30 GHz RF components....

I. Syratchev, proceeding of LC2002.

Kuzikov, S. V., et al. Vol. 807. No. 1. AIP, 2006.

Beam dynamic requirement

0.045 0.04 0.035 0.025 0.020 50 100 150 200 ΔΕ [MeV]

From WorkPackage6: Suggested minimum aperture ~ 2mm Maximum harmonic voltage ~ 20 MV

$$\frac{\Delta E}{(36/12)^2} \sim 20 \ MV$$

 $CSR \propto R_{56}^{\overline{2}}$

See it in Xingguang's presentation

Structure analytical optimization

- Working at 36 GHz, 2π/3 mode
- Constant impedance structure
- Consistent with Lancaster's results

Geometrical parameters	
a [mm]	≥ 2
b [mm]	≥ 3.8869
L [mm]	2.778 (2π/3 mode)
r ₀ [mm]	0.8
t [mm]	0.6

 \mathbf{r}_0

b

 r_1

a

Power source being developed by University of Strathclyde

- 36 GHz Gyroklystron model verified
 - over 2MW, pulse width 2 µs, repetition rate 100 Hz
 - 260 kW output in the medium-power demonstration version
- 48 GHz Gyroklystron is under study
 - aim at 1.5MW output power

See it in Liang's presentation

Pulse compression system

SLED II at CTF3 two 50 mm diameter TE01 delay lines

- SLEDII type
- Length ≤ 5 m for 1 meter Linearizer with v_g/c₀ over 10%
- Power gain over 4
 - 8 MW input power is approximately available for the Linearizer
- More compact with multi-mode delay line
- BOC type/Sphere type?

I, Syratchev. Proceeding of EPAC2006.

Power Re-circulation Option

- Using hybrids to recirculate the RF power:
 - Relaxes the requirements on the load
 - Could effectively raise the structure's filling time.
 - Reduction of the input power needs is in function of the total power attenuation along the structure, i.e. it may be difficult in our case (see bottom right figure)

Recirculation has been proposed in the past

Baseline solution

- 2.0 MW, 2 µs power from Gyroklystron
- Power gain of 4 from 5 meter SLEDII pulse compressor
- 22.4 MV @ 8 MW input power for 1 meter Ka-band structure

Input power

iw

Coupler design

- Preliminary study of waveguide power coupler
- Double rectangular WR28 power port
- Mode converter components are needed to reduce the loss

36 GHz Linearizer system for full X-band XLS module layout

Power transfer system needs to be further studied

Alternative solutions

- Many further ideas to be explored...
 - Dielectric accelerating structure
 - Standing-wave structure
 - 48 GHz Linearizer
 - Passive Linearizer

Summary

- Initial Ka-band study indicates that 36 GHz TW Linearizer system with 2 MW Gyroklystron and pulse compressor is feasible based on CLIC 30 GHz experience
- Much more details work will be done by the collaboration of Compact Light

Thank you!

CompactLight@elettra.eu

www.CompactLight.eu

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

