

WP3 Magnetic Compressor Design Study

S. Di Mitri,

Elettra Sincrotrone Trieste

Contributors:

A. Giribono, C. Vaccarezza – INFN LNF

A. Latina, X. Liu – CERN

E. Marin, R. Munoz Horta – ALBA CELLS

A. Faus Golfe, Y. Han – LAL

Analytical Estimates

$$\sigma_C^2 \cong \left(C - 1\right)^2 \frac{\sigma_\phi^2}{\tan^2 \phi} \quad \bigg|$$

- C>>1, $\sigma_{\phi} = 0.1 \deg$
- $\sigma_{\rm C} < 5\%$
- $\rightarrow \Delta \dot{\phi}_{RF} < 25 \text{ deg}$

Reference particle (on-momentum) Electron w/ lower energy is ahead (off-momentum)

S-band linac

$$e\Delta V_{\rm H} = \frac{1}{\left(k_{\rm H}^2/k^2 - 1\right)} \left\{ E_{\rm BC} \left[1 + \frac{2}{k^2} \frac{T_{566}}{\left| R_{56} \right|^3} \left(1 - \frac{1}{C} \right)^3 \right] - E_{\rm i} \right\}$$

- C >> 1, $E_{BC1} < 300 \text{ MeV}$
- H = 4
- $\rightarrow \Delta V_{Xb} < 25 \text{ MV}$

- Practical θ to limit CSR-induced $\varepsilon_{\rm x}$ -growth is < 0.1 rad
- Total length < 15 m
- \rightarrow R₅₆ < 50 mm

simone.dimitri@elettra.eu

Bunch Length, Slice Energy Spread

HX FEL looks critical: Nonlinear compression (single spike)?

$$dz_{\rm f} = dz_{\rm i} + R_{56}d\delta \cong dz_{\rm i} + R_{56}\frac{{\rm d}E}{E_0} = dz_{\rm i}\left(1 + R_{56}\frac{1}{E_0}\frac{{\rm d}E(z)}{{\rm d}z_{\rm i}}\right) + R_{56}\frac{{\rm d}E_{\rm unc}}{E_0} = dz_{\rm i}\left(1 + h_{\rm i}R_{56}\right) + R_{56}\delta_{\rm unc} \equiv dz_{\rm i}/C + R_{56}\delta_{\rm unc}$$

CSR – Projected Emittance Growth

 \square In a 4-dipoles chicane, the CSR effect is **stronger** in the last dipole, where the bunch is **shorter**:

$$\begin{bmatrix}
\varepsilon_{x}^{2} = \varepsilon_{x,0}^{2} + \varepsilon_{x,0} \left(\beta_{x} \left\langle \Delta x^{2} \right\rangle + 2\alpha_{x} \left\langle \Delta x \Delta x^{2} \right\rangle + \gamma_{x} \left\langle \Delta x^{2} \right\rangle \right) \\
\left\langle \Delta x^{2} \right\rangle = \eta_{x}^{2} \sigma_{\delta,CSR}^{2}, \left\langle \Delta x^{2} \right\rangle = \eta_{x}^{2} \sigma_{\delta,CSR}^{2}$$

$$\sigma_{\delta,CSR} = 0.2459 r_e C^{4/3} \frac{N_e R^{1/3} \theta}{\gamma \sigma_{z,i}^{4/3}},$$

100pC 300 MeV θ =0.105rad R_{56} =-50 mm

A. Brynes et al., NJP (2018)

CSR – Linear Optics

 \Box In a 4-dipoles chicane, the CSR effect is **stronger** in the last dipole, where the bunch is **shorter**:

$$\varepsilon_{x}^{2} = \varepsilon_{x,0}^{2} + \varepsilon_{x,0} \left(\beta_{x} \left\langle \Delta x^{2} \right\rangle + 2\alpha_{x} \left\langle \Delta x \Delta x^{2} \right\rangle + \gamma_{x} \left\langle \Delta x^{2} \right\rangle \right) \longrightarrow \varepsilon_{x,0} = \varepsilon_{x,0}^{2} + \varepsilon_{x,0} \left(\overline{\beta}_{x} \theta^{2} \sigma_{\delta,CSR}^{2}\right)_{4th \ dipole}$$

Horizontal waist between 3^{rd} and 4^{th} dipole; θ << 1

A. Brynes et al., NJP (2018)

100pC 300 MeV θ=0.105rad R₅₆=-50 mm

CSR – Nonlinear Optics

M. Guetg (2013)

T. Charles (2016)

- \square Multiple optical knobs (quads, skew quads, sextupoles) to align slice centroids in (x,x',y,y').
- ☐ Current profile almost unchanged.

- \square Weak sextupoles for control up to 3^{rd} order.
- ☐ Current spikes are suppressed, compression "efficiency" increased.

CSR – Other Methods

- 1. Bunch **current shaping** (ramped, trapezoidal, etc.) from the injector to "linearize" the CSR wake.
 - This implies most likely non-uniform slice optics and emittance. Emittance compensation can be limited.
- 2. Shielding of CSR wake with low gap chambers.
 - Typically not practical (beam losses and resistive wall wakefields) as < 2 mm (or so) radius pipe is required.
- 3. Linear optics cancellation of CSR kicks by combination of multiple compressors.
 - This requires very accurate optics tuning along a large portion of the accelerator. It strongly depends on specific beam parameters at the compressors.
- **4. "Adiabatic" compression** split compression in multiple (> 2) stages.
 - This is adopted at PAL XFEL with good results. On paper, 3 chicanes give a lower emittance than 2. In reality, 3 chicanes are the nominal configuration.

Lessons Learned & Plan

- 1. Assumption: Q = 50 100 pC, I = 2/9 kA, CF > 150
- 2. Chicanes are most suitable devices for allowing E-chirp compensation at a later linac stage
- 3. 2-stage compression (+ VB?) are most likely mandatory for the HX FEL
- 4. Projected normalized emittance growth will be $> 0.2 \mu m \text{ rad}$ for C>100
- 5. Minimization of CSR effect mainly through linear and nonlinear optics tuning through each BC.

- Semi-analytical setting of compression scheme (Elettra)
- S2E run with Tstep + Elegant, including CSR and ways to overcome it (INFN)
- S2E run finalized with GPT/Tstep + Placet (ALBA, CERN)
- Comparison of performance vs. passive linearizer (LAL, CERN)

SX FEL – F. Nguyen 18 Oct.'18

-		
	Undulator parar	neters
	undulator period	$1.7~\mathrm{cm}$
	undulator gap	3 mm
	deflection parameter (RMS)	1.9
	Bunch parameters	
	beam energy	4 GeV
<i>i</i>	pulse duration (FWHM)	10 fs
	bunch charge	20 pC
!	peak current	1.9 kA
ί.	norm. emittance	$0.12 \text{ mm} \times \text{mrad}$
	energy spread	0.01 %
	Potential reach	
	FEL wavelength $(\hbar\omega)$	0.66 nm (1.9 keV)
	$N_{\gamma}/\mathrm{pulse}$	5.6×10^{11}
	$E_{\rm FEL}/{ m pulse}$	$0.2~\mathrm{mJ}$
	saturation length	21 m
	·	

Small increase in E_{beam} allows to reach for 0.6 nm (2 keV) comfortably

Emittance stays well between Pellegrini's and Di Mitri's limits

Variable polarization & Two Colours operations require careful feasibility studies with these undulator parameters, in particular at small period:

H. M. Castaneda Cortes is tackling this issue in WP5 and is greatly acknowledged

Please, stay FEL-tuned

HX FEL – F. Nguyen 18 Oct.'18

	Undulator parameters		
	undulator period	$1.3~\mathrm{cm}$	
	undulator gap	$3~\mathrm{mm}$	
	deflection parameter (RMS)	1.17	
	Bunch parameters		
	beam energy	$9~{ m GeV}$	
<i>i</i>	pulse duration (FWHM)	7.5 fs	
:	bunch charge	75 pC	
i	peak current	9 kA	
	norm. emittance	$0.12 \text{ mm} \times \text{mrad}$	
ľ	energy spread	0.01 %	
	Potential reach		
	FEL wavelength $(\hbar\omega)$	0.05 nm (25 keV)	
	$N_{\gamma}/\mathrm{pulse}$	2.5×10^{11}	
	$E_{\rm FEL}/{ m pulse}$	1 mJ	
	saturation length	$25~\mathrm{m}$	

Stay in the middle!

Hard to reach for 1 mJ energy/pulse with much lower charge or much higher emittance

Hard to achieve much lower emittance with such a charge

Bottom line: this is our choice, but feel free to round up values at your convenience and risk!