

K-Band RF Linearizer Design

A. Castilla*, G. Burt, W.L. Millar - Lancaster University

X. Wu, X. Liu, A. Latina, W. Wuensch - CERN

A. Cross - University of Strathclyde

* a.castilla@cern.ch

Single Cell Revisited: Candidates

- 2 basic geometries studied:
 - 1. Simple.
 - 2. Reentrant.
- For each of this geometries, 3 variations were evaluated:
 - a. No-blends at the equator ("Pillbox").
 - b. 1-blend at the equator ("CLARA-style").
 - c. 2-blends at equator ("Classic").
- Each for 2 phase advances:
 - $2\pi/_3$.
 - $5\pi/_{6}$.

Single Cell Revisited: Comparison

- Shunt Impedance:
 - Higher for simple cells and low iris apertures.
- Intrinsic Q-Factor:
 - On average, higher for simple cells.

2-Blends Simple Cell

2-Blends Reentrant Cell

Single Cell Revisited: Comparison

- Group velocities:
 - Lower for the reentrant cell.
- Attenuation:
 - Higher for the reentrant cells.

2-Blends Simple Cell

2-Blends Reentrant Cell

Power Considerations

- 36GHz Gyro-klystron:
 - 2μ s pulse length.
 - \geq 2 MW amplitude.
- SLEDI Pulse Compressor:
 - 50ns flat top.
 - ~4× power gain.
 - Needs both Amp. & Phase ramps to have flat Amp. & Phase outputs.
 - Higher gains are possible w/o flat phase (not useful for beam operations).

W.L. Millar - ULANC

Single Cell: 1m Structure Performance

- For 2mm iris radius:
 - Simple and reentrant cells have comparable performances.
 - 2. $2\pi/3$ and $5\pi/6$ also perform similarly.

2-Blends Simple Cell @120deg

25 E_z [MV/m] 15 10 1.0 1.5 4.5 R_{iris} [mm]

2-Blends Reentrant Cell @150deg

First XLS - CompactLight Annual Meeting, Barcelona, 121h December 2018

Cell Design

- Simple cell = less manufacturing constraints.
- A geometry is proposed.
- $H_p \approx 90 \mathrm{kA/m}$ and $E_p \approx 65 \mathrm{MV/m}$ @25MV/m

Parameter	Value	Units
Freq.	36	GHz
Q	4392	
r_L	106	MΩ/m
v_g	0.12	С
α_0	0.7	m ⁻¹
E_p^*	2.6	MV/m
R	3.96	mm
R_i	2.00	mm
$L_c (\varphi = 2\pi/3)$	2.78	mm
L_i	0.60	mm
r_b	1.00	mm

^{*}normalized to $E_z = 1 MV/m$

A Quick Look Into The Wakes

- Considering a 1 meter structure for $2\pi/3$ mode (i.e. 360 cells).
- The longitudinal loss factor per cell decreases with the iris aperture.
- Effect of the transverse wakes even more significant.

A. Castilla

Other Options

Power recirculation advantages bounded by the total structure attenuation:

• It may be challenging for this aperture.

A. Castilla

Simple Cell: 'Constant Gradient' (@8MW)

- Improved gains at the expense of tapering the iris:
 - Higher loss factor.
 - ~32MV integrated voltage.

Simple Cell: 'Constant Gradient' (@8MW)

- Improved gains at the expense of tapering the iris:
 - Higher loss factor: Sweeping between 2 and 1mm.
 - Slightly higher integrated voltage (~32MV).

Summary

Detailed exploration of the parameter space revisited:

- Wakes constrain the minimum iris aperture.
- RF performance constrains the maximum iris aperture.
- A simple cell geometry is proposed with 2mm iris radius.

Performance of a 1m structure:

~25MV achievable with reasonable power considerations.

Power recirculation option:

More efficient for higher iris apertures (i.e. lower attenuation factors).

Constant gradient structure option:

- Higher integrated voltages than the constant impedance option.
- Higher loss factors from wakes due to reduction on the iris aperture.

