A possible linearizer at 35.982 GHz

B. Spataro - M. Behtouei (phd) , L. Faillace

- M. Migliorati - M.Sciscio' and A. Variola
on behalf of the SPARC - LAB collaboration

Summary

Rounded cavity design (hard shape cavity already discussed in Trieste)

Accelerating electric field estimations

Thermal stress studies

Longitudinal and transverse loss parameters estimations

TW cavity shape for the $2 \pi / 3$ mode

Shunt impedance and quality factor \mathbf{Q} estimations of the rounded

 cavity as function of the iris radius at $F=35.982 \mathrm{GHz}$iris radius $\mathbf{a}=1.333 \mathrm{~mm}$
b $=3.657 \mathrm{~mm}$

$R_{\text {sh }} / m=158 \mathrm{M} \Omega / \mathrm{m}$ (144 hard edge)
thickness iris $\mathbf{h}=0.667 \mathrm{~mm}$

Dispersion relation of the rounded shape of the TW structure

Frequency mode as function of the phase advance of the TW structure (rounded shape)

$\mathbf{a}=1.333 \mathrm{~mm}, \mathbf{h}=0.667 \mathrm{~mm} \mathrm{~mm}, \mathrm{~b}=3.657 \mathrm{~mm}$

$$
\text { F = 35.982 GHz (} 2 \pi / 3 \text { mode) }
$$

$$
\mathbf{v}_{\mathrm{gr}} / \mathrm{c}=0.04 \quad \mathrm{~K}=1.5 \%
$$

'Rounded' TW cavity fields estimations for the $2 \pi / 3$ mode at $\mathrm{F}=35.983 \mathrm{GHz}$

$$
\begin{aligned}
& a / \lambda=0.16 \\
& a=1.333 \mathrm{~mm} \text { (iris radius) } \\
& \mathrm{b}=3.657 \mathrm{~mm} \text { (cavity radius) } \\
& \mathrm{h}=0.667 \mathrm{~mm} \text { (iris thickness) } \\
& \mathrm{Q}=4110 \\
& \mathrm{R}_{\mathrm{sh}} / \mathrm{m}=158 \mathrm{M} \Omega / \mathrm{m} \\
& \mathrm{v}_{\mathrm{gr}} / \mathrm{c}=0.04
\end{aligned}
$$

Magnetic field distribution of the TM_{010} mode

Input RF power for different gradients of the rounded shape

Assuming a structure length $L=25 \mathrm{~cm}, \mathrm{~T}_{\mathrm{f}}=20 \mathrm{~ns}$ (filling time), $\mathrm{R} / \mathrm{Q}=\mathbf{3 8 . 4} \mathrm{K} \Omega / \mathrm{m}$ and $\tau=0.57$ (attenuation)

Parameter	Value
Filling Time, Tf	20 ns
L, length	25 cm
w, frequency	$2 \mathrm{pi}^{*} 35.982 \mathrm{GHz}$
R/Q	$38.4 \mathrm{k} \Omega / \mathrm{m}$
τ	0.57

For a CG structure: input group velocity $\mathrm{v}_{\mathrm{gr} r_{-} \mathrm{in}} / \mathrm{c}=6.7 \%$, output group velocity $\mathrm{v}_{\mathrm{gr} _ \text {out }} / \mathrm{c}=\mathbf{2 . 2 \%}$, For a Cl structure : $\mathrm{v}_{\mathrm{gr}}=0.04 \mathrm{c}$

35.982 GHz cavity for the Compact light XLS project at $\mathrm{E}_{\mathrm{acc}}=100 \mathrm{MV} / \mathrm{m}$ case RF Pulsed Heating and Modified Poynting Vector estimations

35.982 GHz cavity for the Compact light XLS project at $\mathrm{E}_{\mathrm{acc}}=125 \mathrm{MV} / \mathrm{m}$ case RF Pulsed Heating and Modified Poynting Vector estimations

Main RF Parameters	
Frequency	35.982 GHz
Accelerating Gradient	$125 \mathrm{MV} / \mathrm{m}$
Shunt Impedance	$158 \mathrm{M} \Omega / \mathrm{m}$
Quality Factor Q_{0}	4110

Max $\mathrm{E}_{\text {surface }}=250 \mathrm{MV} / \mathrm{m}$
Max $\mathrm{H}_{\text {surface }}=0.33 \mathrm{MA} / \mathrm{m}$
$T_{R F}=50 \mathrm{~ns}$, flat top

FF Pulsed Heating
$\Delta T=16.5^{\circ} \mathrm{C}$
(below $50^{\circ} \mathrm{C}$ safety threshold)

- RF Breakdown rate statistics depends on numerous factors:

RF pulsed heating, peak electric and magnetic field, Poynting vector S (modified)

- Modified Poynting vector Sc=re(S)+im(S)/6
- Safety threshold Sc < 6.3 MW/mm² @50ns pulse

35.982 GHz cavity for the Compact light XLS project
 Thermal and Stress Analyses

- Hot spot $=40^{\circ} \mathrm{C}$ (standard operation). Possible to vary by adjusting water flux and temperature.
- Stress Analysis shows yield strength (Von Mises) < 20 MPa (below safety threshold for copper ~ 70 MPa)
- Maximum displacement $\sim 1 \mu \mathrm{~m}$ (frequency shift negligible)

Thermal Simulation, single cell (35.982 GHz) Stress Analysis (Von Mises), single cell (35.982 GHz)

- Cooling system will be optimized during final engineering (water jacket or brazed channels) in order to avoid water-to-vacuum leaks.

Wake fields studies on the 35.982 GHz structure (CST and ABCI software)

$a / \lambda=0.16$
$\mathrm{R}_{\mathrm{sh}} / \mathrm{m}=158 \mathrm{M} \Omega / \mathrm{m}$
$Q=4110$
$v_{\mathrm{gr}} / \mathrm{c}=0.04$

Wake fields studies on the 35.982 GHz structure (CST and ABCI software)

$$
\sigma=1 \mathrm{~mm} \text { (bunch lenght) }
$$

$\sigma=0.5 \mathrm{~mm}$ (bunch lenght)
[in order to confirm the K. Bane's scaling scales for shortest bunches]

Wake fields studies on the 35.982 GHz structure
(CST and ABCI software)

```
90 cells
    252 mm
    -00000000000000000000000000000000000000000000000000000000000000000000000000
```

Bunch length (rms) : 1 mm

	Longitudinal Loss factor $[\mathrm{V} / \mathrm{pC}]$	Transverse loss factor $(\mathrm{V} / \mathrm{pC} / \mathrm{m}]$
5 cells	18.2	16000
15 cells	54.3	46400
45 cells	161.5	136500
90 cells	319.4	268900

Wake fields studies on the 35.982 GHz structure

By assuming $\mathrm{N}=90$ cells ($\mathrm{L}=\mathbf{2 5 2} \mathrm{mm}$), $\mathrm{K}_{\mathrm{l}} \cong 319.4 \mathrm{~V} / \mathrm{pC}, \mathrm{Q}=100 \mathrm{pC}$

$$
\mathrm{E}_{\text {losses }} \cong 32 \mathrm{KeV}
$$

Transverse loss parameter as function of the cells number of the structure at $\mathrm{F}=35.982 \mathrm{GHz}$

Assuming $\mathrm{N}=90$ cells ($\mathrm{L}=252 \mathrm{~mm}$), $K_{t} \cong \mathbf{2} .68910^{5} \mathrm{~V} / \mathrm{pC} / \mathrm{m}$, $y(0)=1010^{-6} \mathrm{~m}, \mathrm{Q}=\mathbf{1 0 0} \mathrm{pC} ; \mathrm{E}=\mathbf{2 0} \mathrm{MeV}$

$$
\Rightarrow \theta=\frac{y(0)}{E / e} Q K_{t} \cong 13.4510^{-6} \mathrm{rad}
$$

Longitudinal wakefields as function of the bunch head for a $\sigma=1 \mathrm{~mm}$ bunch length with $\mathrm{a}=1.333 \mathrm{~mm}, \mathrm{~b}=3.657 \mathrm{~mm}, \mathrm{~h}=0.667 \mathrm{~mm}$ (whole structure estimations)

$\mathrm{K}_{\mathrm{L}}=319.35 \mathrm{~V} / \mathrm{pC}$

Transverse wakefields as function of the bunch head for a $\sigma=1 \mathrm{~mm}$ bunch length with $a=1.333 \mathrm{~mm}, \mathrm{~b}=3.657 \mathrm{~mm}, \mathrm{~h}=0.667 \mathrm{~mm}$ (whole structure estimations)

$$
\mathrm{K}_{\mathrm{T}}=268900 \mathrm{~V} / \mathrm{pC} / \mathrm{m}
$$

Longitudinal and transverse loss parameter as function of the bunch length σ (shorter bunches)

5 cells simulations

Longitudinal

Scaling law

$$
\boldsymbol{K}_{l} \propto \boldsymbol{\omega}^{2} \frac{1}{\sqrt{\sigma}} \frac{1}{\boldsymbol{a}^{2}}
$$

Transverse

Scaling law (K. Bane-SLAC)
$K_{t} \propto \omega^{2} \sqrt{\sigma} \frac{1}{a^{4}}$

Longitudinal and transverse loss parameter at $F=35.982 \mathrm{GHz}$ as function of the iris aperture a with $\sigma=0.5 \mathrm{~mm}$

5-cells structure

Scaling law (K. Bane-SLAC)

$$
K_{l} \propto \omega^{2} \frac{1}{\sqrt{\sigma}} \frac{1}{a^{2}}
$$

Scaling law (K. Bane-SLAC)

$$
K_{t} \propto \omega^{2} \sqrt{\sigma} \frac{1}{a^{4}}
$$

Thank you very much for your attention

